

SUBJECT: AUTOLOGOUS CHONDROCYTE IMPLANTATION	EFFECTIVE DATE: 07/02/99 REVISED DATE: 02/01/01, 01/17/02, 03/20/03, 01/15/04, 01/20/05, 11/17/05, 07/20/06, 06/21/07, 05/14/08, 04/16/09, 05/27/10, 05/19/11, 05/24/12, 04/18/13, 03/20/14
POLICY NUMBER: 7.01.38 CATEGORY: Technology Assessment	PAGE: 1 OF: 9

• If the member's subscriber contract excludes coverage for a specific service it is not covered under that contract. In such cases, medical policy criteria are not applied.

• Medical policies apply to commercial and Medicaid products only when a contract benefit for the specific service exists.

• Medical policies only apply to Medicare products when a contract benefit exists and where there are no National or Local Medicare coverage decisions for the specific service.

POLICY STATEMENT:

- I. Based upon our criteria and assessment of peer-reviewed literature, autologous chondrocyte implantation (ACI) is **medically appropriate** for treatment of symptomatic isolated cartilage defects of the femoral condyle in a stable knee when all of the following are present:
 - A. Patient's age is between 15 and 55 years;
 - B. There is symptomatic cartilaginous defect in the medial, lateral or trochlear area of the femoral condyle. If the defect extends deep into subchondral bone, repair of the subchondral base must be addressed first;
 - C. There are clinically significant symptoms, cartilage injury (acute or chronic), that are unresponsive to physical therapy, conservative treatment, prior arthroscopic or other surgical repair procedure (e.g. debridement, drilling, microfracture);
 - D. The defect size greater than 2 cm²;
 - E. The knee must be stable and aligned; an osteotomy may be required to achieve this; and
 - F. There is no evidence of osteoarthritis or inflammatory disease (e.g., rheumatoid arthritis, gout, Bechterew syndrome, chondrocalcinosis).
- II. Based upon our criteria and assessment of peer-reviewed literature, autologous chondrocyte implantation (ACI) is **investigational** for use in sites other than the femoral condyle (e.g. patella, talus).
- III. Based upon our criteria and assessment of peer-reviewed literature, the following techniques for autologous chondrocyte implantation are considered **investigational**:
 - A. Matrix induced or scaffold associated ACI;
 - B. Allogeneic minced cartilage (e.g., DeNovo NT Graft).

Refer to Corporate Medical Policy # 7.01.59 regarding Osteochondral Grafting.

POLICY GUIDELINES:

The Federal Employee Health Benefit Program (FEHBP/FEP) requires that procedures, devices or laboratory tests approved by the U.S. Food and Drug Administration (FDA) may not be considered investigational and thus these procedures, devices or laboratory tests may be assessed only on the basis of their medical necessity.

DESCRIPTION:

Destruction of the articulating surface of the synovial joint of the knee results in increased pain and loss of function to the joint. Damaged articular cartilage fails to heal on its own making repair of articular surfaces difficult. Autologous chondrocyte implantation (ACI) is a surgical treatment for patients with deep cartilage defects in the knee. The procedure involves replacing defective articular cartilage with cultured chondrocytes that will produce articular cartilage that is similar in composition and properties to the original tissue. Cells are harvested from the patient's own knee, grown in a laboratory and then implanted into the knee to improve knee function and reduce pain. A periosteum patch covers the implanted cells. The procedure is performed via arthroscopy.

SUBJECT: AUTOLOGOUS CHONDROCYTE IMPLANTATION POLICY NUMBER: 7.01.38 CATEGORY: Technology Assessment	EFFECTIVE DATE: 07/02/99 REVISED DATE: 02/01/01, 01/17/02, 03/20/03, 01/15/04, 01/20/05, 11/17/05, 07/20/06, 06/21/07, 05/14/08, 04/16/09, 05/27/10, 05/19/11, 05/24/12, 04/18/13, 03/20/14 PAGE: 2 OF: 9
--	--

Only Carticel® has received FDA approval through a biologics license for the culturing of chondrocytes. The approval restricts Carticel® to use for the repair of symptomatic cartilaginous defects of the femoral condyle (medial, lateral, or trochlear), caused by acute or repetitive trauma in patients who have had an inadequate response to a prior arthroscopic or other surgical repair procedure.

Methods to improve the ACI procedure are being investigated, including the use of a scaffold or matrix-induced ACI (MACI) composed of biocompatible carbohydrates, protein polymers or synthetics (e.g., matrix based ACI, Hyalograft C, Cartipatch). The use of minced cartilage techniques are also in the early stages of development. The tissue fragments are mixed intra-operatively with fibrin glue before implantation. It is thought that mincing the tissue helps with cell migration.

RATIONALE:

Genzyme Tissue Repair's Carticel autologous chondrocytes received approval by the FDA of its biologics license for repair of symptomatic cartilaginous defects of the femoral condyle (medial, lateral, or trochlear), caused by acute or repetitive trauma in patients who have had an inadequate response to a prior arthroscopic or other surgical repair procedure. There is sufficient data published in the peer-reviewed literature to conclude that autologous chondrocyte transplantation results in relief of symptoms and improved function in patients who had failed conservative management and arthroscopic or other surgical treatments. Several studies include reports of histological examinations of the graft site showing stable hyaline cartilage after surgery. Studies in the United States enrolled patients between the ages of 15 and 45 years.

K Zaslav and colleagues (2009) conducted a prospective, cohort study (STAR) to assess the effectiveness of autologous chondrocyte implantation in patients who failed prior treatments for articular cartilage defects of the knee. STAR was a prospective, open-label 4-year study in 154 patients (mean age: 35 years; 69% male) from 29 clinical centers. Each

patient served as his or her own control, undergoing ACI after having failed or experienced an inadequate response to a prior cartilage repair procedure. Outcomes included change from baseline in knee function, knee pain, quality of life, and overall health. Duration of benefit after autologous chondrocyte implantation was compared with the failed prior non-autologous chondrocyte implantation procedure. One hundred twenty-six patients (82%) completed the protocol. Seventy-six percent of patients were treatment successes at study end, while 24% were deemed treatment failures.

Preoperative mean knee pain score was 3.0 (SD, 1.8; 0 = severe, 10 = normal). Mean improvements were observed from baseline to all time points ($P < .001$) for all outcome measures. Preoperative to 48-month values, respectively, were as follows: On the Knee injury and Osteoarthritis Outcome Score subscales of pain: 48.7 to 72.2; other symptoms: 51.8 to 70.8; sports/recreation: 25.8 to 55.8; knee quality of life: 20.9 to 52.2; and activities of daily living: 58.6 to 81.0; on the Modified Cincinnati Overall Knee score: 3.3 to 6.3; on the visual analog scale: 28.8 to 69.9; and on the SF-36 Overall Physical Health: 33.0 to 44.4. Seventy-six patients (49%) had subsequent surgical procedure(s), predominantly arthroscopic. The authors concluded that patients with moderate to large chondral lesions with failed prior cartilage treatments can expect sustained and clinically meaningful improvement in pain and function after autologous chondrocyte implantation.

There is insufficient evidence in the literature to support the use of chondrocyte implantation other than the femoral condyle of the knee.

The literature describing the use of a porcine collagen rather than a periosteum cover and matrix induced autologous chondrocyte implantation, using for example, Hyalgraft C or the MACI technique is limited, and use of these products in the autologous chondrocyte implantation procedure has not been approved by the FDA. The use of minced cartilage techniques are also in the early stages of development. DeNovo NT (natural tissue) Graft and DeNovo® ET Live Chondral Engineered Tissue Graft (Neocartilage) are produced by ISTO Technologies (exclusively distributed by Zimmer, Inc.). DeNovo NT consists of manually minced cartilage tissue pieces obtained from juvenile allograft donor joints. As there are no chemicals used and minimal manipulation, it is regulated as an allograft tissue rather than a biological implant. Therefore, the allograft tissue does not require FDA approval for marketing. DeNovo NT is currently available in the USA. Neocartilage uses juvenile allogeneic cartilage cells that are isolated and expanded in vitro, similar

SUBJECT: AUTOLOGOUS CHONDROCYTE IMPLANTATION POLICY NUMBER: 7.01.38 CATEGORY: Technology Assessment	EFFECTIVE DATE: 07/02/99 REVISED DATE: 02/01/01, 01/17/02, 03/20/03, 01/15/04, 01/20/05, 11/17/05, 07/20/06, 06/21/07, 05/14/08, 04/16/09, 05/27/10, 05/19/11, 05/24/12, 04/18/13, 03/20/14 PAGE: 3 OF: 9
--	--

to other ACI techniques. Neocartilage is currently being studied in human clinical trials in the USA under an FDA approved investigational new drug (IND) application.

CODES: Number Description

Eligibility for reimbursement is based upon the benefits set forth in the member's subscriber contract.

CODES MAY NOT BE COVERED UNDER ALL CIRCUMSTANCES. PLEASE READ THE POLICY AND GUIDELINES STATEMENTS CAREFULLY.

Codes may not be all inclusive as the AMA and CMS code updates may occur more frequently than policy updates.

CPT: 27412 Autologous chondrocyte implantation, knee

Copyright © 2014 American Medical Association, Chicago, IL

HCPCS: J7330 Autologous cultured chondrocytes, implant

S2112 Arthroscopy, knee, surgical for harvesting of cartilage (chondrocyte cells)

ICD9: 715.16 Osteoarthritis, localized, primary, lower leg

715.26 Osteoarthritis, localized, secondary, lower leg

715.36 Osteoarthritis, localized, not specified whether primary or secondary, lower leg

715.96 Osteoarthritis, unspecified whether generalized or localized, lower leg

716.16 Traumatic arthropathy, lower leg

717.9 Unspecified internal derangement, knee

718.86 Other joint derangement, lower leg

719.86 Other specified disorders of joint, lower leg

732.7 Osteochondritis dissecans

733.90 Other unspecified disorder of bone and cartilage

ICD10: M12.561-M12.569 Traumatic arthropathy (code range)

M17.0- M17.9 Osteoarthritis of knee (code range)

M23.50-M23.52 Chronic instability of knee (code range)

M23.90-M23.92 Unspecified, internal derangement of knee (code range)

M25.261-M25.269 Flail joint, knee (code range)

M25.361-M25.369 Other instability, knee (code range)

M25.861-M25.869 Other specified joint disorder, knee (code range)

M85.9 Disorder of bone density and structure, unspecified

M89.9 Disorder of bone, unspecified

M93.20 Osteochondritis dissecans of unspecified site

M93.261-M93.269 Osteochondritis dissecans knee (code range)

M94 Disorder of cartilage, unspecified

SUBJECT: AUTOLOGOUS CHONDROCYTE IMPLANTATION POLICY NUMBER: 7.01.38 CATEGORY: Technology Assessment	EFFECTIVE DATE: 07/02/99 REVISED DATE: 02/01/01, 01/17/02, 03/20/03, 01/15/04, 01/20/05, 11/17/05, 07/20/06, 06/21/07, 05/14/08, 04/16/09, 05/27/10, 05/19/11, 05/24/12, 04/18/13, 03/20/14 PAGE: 4 OF: 9
--	--

REFERENCES:

Almqvist KF, et al. Treatment of cartilage defects in the knee using alginate beads containing human mature allogeneic chondrocytes. *Am J Sports Med* 2009 Oct;37(10):1920-9.

Aurich M, et al. Arthroscopic treatment of osteochondral lesions of the ankle with matrix-associated chondrocyte implantation: early clinical and magnetic resonance imaging results. *Am J Sports Med* 2011 Feb;39(2):311-9.

Basad E, et al. Matrix-induced autologous chondrocyte implantation versus microfracture in the treatment of cartilage defects of the knee: a 2-year randomized study. *Knee Surg Sports Traumatol Arthrosc* 2010 April;18(4):519-27.

Behery OA, et al. Factors influencing the outcome of autologous chondrocyte implantation: a systematic review. *J Knee Surg* 2013 Jun;26(3):203-11.

Bekkers JE, et al. Treatment selection in articular cartilage lesions of the knee: a systematic review. *Am J Sports Med* 2009 Nov;37 Suppl 1:148S-55S.

*Bentley G, et al. A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. *J Bone Joint Surg - Brit* 2003 Mar;85(2):223-30.

Bentley G, et al. Minimum ten-year results of a prospective randomized study of autologous chondrocyte implantation versus mosaicplasty for symptomatic articular cartilage lesions of the knee. *J Bone Joint Surg Br* 2012 Apr;94(9):504-9.

Beris AE, et al. Treatment of full-thickness chondral defects of the knee with autologous chondrocyte implantation: a functional evaluation with long-term follow-up. *Am J Sports Med* 2012 Mar;40(3):562-7.

Bhosale AM, et al. Midterm to long-term longitudinal outcome of autologous chondrocyte implantation in the knee joint: a multilevel analysis. *Am J Sports Med* 2009 Nov;37 Suppl 1:131S-8S.

BlueCross BlueShield Association. Autologous chondrocyte transplantation and other cell-based treatments of focal articular cartilage lesions. Medical Policy Reference Manual Policy #7.01.48. 2013 Jun 13.

*BlueCross BlueShield Association Technology Evaluation Center (TEC) Assessment Program. Autologous chondrocyte transplantation. 2003 Jun 18(2):1-80.

*Browne JE, et al. Clinical outcome of autologous chondrocyte implantation at 5 years in US subjects. *Clin Ortho Rel Res* 2005 Jul;436:237-45.

Brittberg M. Cell carriers as the next generation of cell therapy for cartilage repair: a review of the matrix-induced autologous chondrocyte implantation procedure. *Am J Sports Med* 2010 Jun;38(6):1259-71.

Choi NY, et al. Gel-type autologous chondrocyte (Chondron) implantation for treatment of articular cartilage defects of the knee. *BMC Musculoskelet Disord* 2010 May 28;11:103.

*Clar, et al. Clinical and cost-effectiveness of autologous chondrocyte implantation for cartilage defects in knee joints: systematic review and economic evaluation. *Health Tech Assess* 2005;9(47).

Cole BJ, et al. Outcomes after a single-stage procedure for cell-based cartilage repair: A prospective clinical safety trial with 2-year follow-up. *Am J Sports Med* 2011 Apr 1 [Epub ahead of print].

Cole BJ, et al. Outcomes of autologous chondrocyte implantation in study of the treatment of articular repair (STAR) patients with osteochondritis dissecans. *Am J Sports Med* 2012 Sep;40(9):2015-22.

Crawford DC, et al. NeoCart, an autologous cartilage tissue implant, compared with microfracture for treatment of distal femoral cartilage lesions: an FDA phase-II prospective, randomized clinical trial after two years. *J Bone Joint Surg Am* 2012 Jun 6;94(11):979-89.

SUBJECT: AUTOLOGOUS CHONDROCYTE IMPLANTATION POLICY NUMBER: 7.01.38 CATEGORY: Technology Assessment	EFFECTIVE DATE: 07/02/99 REVISED DATE: 02/01/01, 01/17/02, 03/20/03, 01/15/04, 01/20/05, 11/17/05, 07/20/06, 06/21/07, 05/14/08, 04/16/09, 05/27/10, 05/19/11, 05/24/12, 04/18/13, 03/20/14 PAGE: 5 OF: 9
--	--

Ebert JR, et al. Clinical and magnetic resonance imaging-based outcomes to 5 years after matrix-induced autologous chondrocyte implantation to address articular cartilage defects in the knee. Am J Sports Med 2011 Apr;39(4):753-63.

Ebert JR, et al. Arthroscopic matrix-induced autologous chondrocyte implantation: 2-year outcomes. Arthroscopy 2012 Apr 5 [Epub ahead of print].

Ebert JR, et al. Factors predictive of outcome 5 years after matrix-induced autologous chondrocyte implantation in the tibiofemoral joint. Am J Sports Med 2013 Jun;41(6):1245-54.

Enea D, et al. Matrix-induced autologous chondrocyte implantation (MACI) in the knee. Knee Surg Sports Traumatol Arthrosc 2012 May;20(5):862-9.

Erggelet C, et al. Autologous chondrocyte implantation versus ACI using 3D-bioresorbable graft for the treatment of large full-thickness cartilage lesions of the knee. Arch Orthop Trauma Surg 2010 Aug;130(8):957-64.

Eshed I, et al. Assessment of cartilage repair after autologous transplantation with fibrin-hyaluronan matrix-Correlation of morphological MRI, biochemical T2 mapping and clinical outcomes. Eur J Radiol 2011 Mar 31 [Epub ahead of print].

Filardo C, et al. Arthroscopic second-generation autologous chondrocyte implantation: a prospective 7-year follow-up study. Am J Sports Med 2011 Oct;39(10):2153-60.

Filardo G, et al. Treatment of “patellofemoral” cartilage lesions with matrix-assisted autologous chondrocyte transplantation: A comparison of patellar and trochlear lesions. Am J Sports Med 2013 Dec 13 [Epub ahead of print].

Filardo G, et al. Scaffold-based repair for cartilage healing: a systematic review and technical note. Arthroscopy 2013 Jan;29(1):174-86.

Fontana A, et al. Arthroscopic treatment of hip chondral defects: autologous chondrocyte transplantation versus simple debridement- a pilot study. Arthroscopy 2012 Mar;28(3):322-9.

*Fu FH, et al. Autologous chondrocyte implantation versus debridement for treatment of full-thickness chondral defects of the knee. Am J Sports Med 2005;33(11):1658-66.

Genoveses E, et al. Matrix-induced autologous chondrocyte implantation of the knee: mid-term and long-term follow-up by MR arthrography. Skeletal Radiol 2011 Jan;40(1):47-56.

Giannini S, et al. Surgical treatment of osteochondral lesions of the talus by open-field autologous chondrocyte implantation: a 10-year follow-up clinical and magnetic resonance imaging T2-mapping evaluation. Am J Sports Med 2009 Nov;37 Suppl 1:112S-8S.

Giannini S, et al. Cartilage repair evolution in post-traumatic osteochondral lesions of the talus: from open field autologous chondrocyte to bone-marrow-derived cells transplantation. Injury 2010 Nov;41(11):1196-203.

Gille J, et al. Mid-term results of autologous matrix-induced chondrogenesis for treatment of focal cartilage defects in the knee. Knee Surg Sports Traumatol Arthrosc 2010 Nov;18(11):1456-64.

Giza E, et al. Matrix-induced autologous chondrocyte implantation of talus articular defects. Foot Ankle Int 2010 Sep;31(9):747-53.

Gobbi A, et al. Patellofemoral full-thickness chondral defects treated with second-generation autologous chondrocyte implantation: results at 5 years' follow-up. Am J Sports Med 2009 Jun;37(6):1083-92.

*Gooding CR, et al. A prospective, randomized study comparing two techniques of autologous chondrocyte implantation for osteochondral defects in the knee: Periosteum covered versus type I/III collagen covered. Knee 2006;13:203-10.

SUBJECT: AUTOLOGOUS CHONDROCYTE IMPLANTATION POLICY NUMBER: 7.01.38 CATEGORY: Technology Assessment	EFFECTIVE DATE: 07/02/99 REVISED DATE: 02/01/01, 01/17/02, 03/20/03, 01/15/04, 01/20/05, 11/17/05, 07/20/06, 06/21/07, 05/14/08, 04/16/09, 05/27/10, 05/19/11, 05/24/12, 04/18/13, 03/20/14 PAGE: 6 OF: 9
--	--

Goyal D, et al. Evidence-based status of second-and third-generation autologous chondrocyte implantation over first generation: a systematic review of level I and II studies. Arthroscopy 2013 Nov;29(11):1872-8.

Gross CE, et al. Operative treatment of chondral defects in the glenohumeral joint. Arthroscopy 2012 Dec;28(12):1889-91.

Harris JD, et al. Autologous chondrocyte implantation: a systematic review. J Bone Joint Surg Am 2010 Sep 15;92(12):2220-33.

Harris JD, et al. Biological knee reconstruction: a systematic review of combined meniscal allograft transplantation and cartilage repair or restoration. Arthroscopy 2011 Mar;27(3):409-18.

Harris JD, et al. Failures, re-operations and complications after autologous chondrocyte implantation- a systematic review. Osteoarthritis Cartilage 2011 Jul;19(7):779-91.

*Horas U, et al. Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint. J Bone Joint Surg - Am 2003;85-A(2):185-92.

Iwasa J, et al. Clinical application of scaffolds for cartilage tissue engineering. Knee Surg Sports Traumatol Arthrosc 2009 Jun;17(6):561-77.

Jordan MA, et al. Operative treatment of chondral defects in the hip joint: a systematic review. Curr Rev Musculoskeletal Med 2012 Sep;5(3):244-53.

Jungmann PM, et al. Autologous chondrocyte implantation for treatment of cartilage defects of the knee: what predicts the need for reintervention? Am J Sports Med 2012 Jan;40(1):58-67.

Kim MK, et al. Autologous chondrocyte implantation in the knee using fibrin. Knee Surg Sports Traumatol Arthrosc 2009 Sep 18 [Epub ahead of print].

*Knutsen G, et al. Autologous chondrocyte implantation compared with microfracture in the knee – a randomized trial. J Bone Joint Surg 2004 Mar;86-A3:455-64.

Kon E, et al. Arthroscopic second generation autologous chondrocyte implantation compared with microfracture for chondral lesions of the knee: prospective nonrandomized study at 5 years. Am J Sports Med 2009 Jan;37(1):33-41.

Kon E, et al. Matrix-assisted autologous chondrocyte transplantation for the repair of cartilage defects of the knee: systematic clinical data review and study quality analysis. Am J Sports Med 2009 Nov;37 Suppl 1:156-66S.

Kon E, et al. Second-generation autologous chondrocyte implantation. Am J Sports Med 2011;39(8):1668-75.

Kon E, et al. How to treat osteochondritis dissecans of the knee: surgical techniques and new trends: AAOS exhibit selection. J Bone Joint Surg Am 2012 Jan 4;94(1):e1(1-8).

Kon E, et al. Articular cartilage treatment in high-level male soccer players: a prospective comparative study of arthroscopic second-generation autologous chondrocyte implantation versus microfracture. Am J Sports Med 2011 Dec;39(12):2549-57.

Kon E, et al. Matrix assisted autologous chondrocyte transplantation for cartilage treatment: A systematic review. Bone Joint Res 2013 Feb 1;2(2):18-25.

*Krishnan SP, et al. Who is the ideal candidate for autologous chondrocyte implantation? J Bone Joint Surg (Br) 2006 Jan;88-B(1):61-4.

Lee KT, et al. The use of fibrin matrix-mixed gel-type autologous chondrocyte implantation in the treatment for osteochondral lesions of the talus. Knee Surg Sports Traumatol Arthrosc 2013 Jun;21(6):1251-60.

SUBJECT: AUTOLOGOUS CHONDROCYTE IMPLANTATION POLICY NUMBER: 7.01.38 CATEGORY: Technology Assessment	EFFECTIVE DATE: 07/02/99 REVISED DATE: 02/01/01, 01/17/02, 03/20/03, 01/15/04, 01/20/05, 11/17/05, 07/20/06, 06/21/07, 05/14/08, 04/16/09, 05/27/10, 05/19/11, 05/24/12, 04/18/13, 03/20/14 PAGE: 7 OF: 9
--	--

Lim HC, et al. Current treatments of isolated articular cartilage lesions of the knee achieve similar outcomes. Clin Orthop Relat Res 2012 Mar 16 [Epub ahead of print].

Looken S, et al. Autologous chondrocyte implantation to repair knee cartilage injury: ultrastructural evaluation at 2 years and long-term follow-up including muscle strength measurements. Knee Surg Sports Traumatol Arthrosc 2009 Nov;17(11):1278-88.

Macmull S, et al. Autologous chondrocyte implantation in the adolescent knee. Am J Sports Med 2011 Aug;38(8):1723-30.

Marlovits S, et al. Clinical and radiological outcomes 5 years after matrix-induced autologous chondrocyte implantation in patients with symptomatic, traumatic chondral defects. Am J Sports Med 2012 Oct;40(10):2273-80.

McNickle AG, et al. Outcomes of autologous chondrocyte implantation in a diverse patient population. Am J Sports Med 2009 Jul;37(7):1344-50.

*Micheli LJ, et al. Autologous chondrocyte implantation of the knee: multicenter experience and minimum 3-year follow-up. Clin J Sport Med 2001 Oct;11(4):223-8.

*Minas T. Autologous chondrocyte implantation for focal chondral defects of the knee. Clin Orthopaed Rel Res 2001 Oct;(391S):349-61.

*Minas T, et al. The role of autologous chondrocyte implantation in the patellofemoral joint. Clin Ortho Rel Res 2005 Jul;436:30-9.

Minas T, et al. Autologous chondrocyte implantation for joint preservation in patients with early osteoarthritis. Clin Orthop Relat Res 2010 Jan;468(1):147-57.

Minas T, et al. Increased failure rate of autologous chondrocyte implantation after previous treatment with marrow stimulation techniques. Am J Sports Med 2009 May;37(5):902-8.

*Mithofer K, et al. Articular cartilage repair in soccer players with autologous chondrocyte transplantation. Am J Sports Med 2005;33(11):1639-46.

Mithofer K, et al. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis. Am J Sports Med 2009 Oct;37(10):2053-63.

Moseley JB, et al. Long-term durability of autologous chondrocyte implantation. Am J Sports Med 2010 Feb;38(2):238-46.

Nam EK, et al. Autologous chondrocyte implantation of the ankle: 1 2-to-5-year follow-up. Am J Sports Med 2009 Feb;37(2):274-84.

Nehrer S, et al. Treatment of full thickness chondral defects with hyalograft C in the knee: a prospective clinical series with 2 to 7 years' follow-up. Am J Sports Med 2009 Nov;37 Suppl 1:81S-7S.

Nejadnik H, et al. Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med 2010 Jun;38(6):1110-6.

Niemeyer P, et al. Autologous chondrocyte implantation for treatment of focal cartilage defects in patients age 40 years and older: A matched-pair analysis with 2-year follow-up. Am J Sports Med 2010 Dec;38(12):2410-6.

Niemeyer P, et al. Autologous chondrocyte implantation for the treatment of chondral and osteochondral defects of the talus: a meta-analysis of available evidence. Knee Surg Sports Traumatol Arthrosc 2012 Sep;20(9):1696-703.

Pascual-Garrido C, et al. Midterm results of surgical treatment for adult osteochondritis dissecans of the knee. Am J Sports Med 2009 Nov;37;Suppl 1:125S-30S.

SUBJECT: AUTOLOGOUS CHONDROCYTE IMPLANTATION POLICY NUMBER: 7.01.38 CATEGORY: Technology Assessment	EFFECTIVE DATE: 07/02/99 REVISED DATE: 02/01/01, 01/17/02, 03/20/03, 01/15/04, 01/20/05, 11/17/05, 07/20/06, 06/21/07, 05/14/08, 04/16/09, 05/27/10, 05/19/11, 05/24/12, 04/18/13, 03/20/14 PAGE: 8 OF: 9
--	--

Pascual-Garrido C, et al. Recommendations and treatment outcomes of patellofemoral articular cartilage defects with autologous chondrocyte implantation: prospective evaluation at average 4-year follow-up. *Am J Sports Med* 2009 Nov;37 Suppl 1:33S-41S.

Pestka JM, et al. Clinical outcome of autologous chondrocyte implantation for failed microfracture treatment of full-thickness cartilage defects of the knee joint. *Am J Sports Med* 2012 Feb;40(2):325-31.

*Peterson L, et al. Two-to 9-year outcome after autologous chondrocyte transplantation of the knee. *Clin Orthopaed Rel Res* 2000 May;(374):212-34.

Peterson L, et al. Autologous chondrocyte implantation: a long-term follow-up. *Am J Sports Med* 2010 Jun;38(6):1117-24.

Petri M, et al. CaReS (MACT) versus microfracture in treating symptomatic patellofemoral cartilage defects: a retrospective matched-pair analysis. *J Orthop Sci* 2013 Jan;18(1):38-44.

Rogers BA, et al. Sequential outcome following autologous chondrocyte implantation of the knee: a six-year follow-up. *Int Orthop* 2010 Oct;34(7):959-64.

*Ruano-Ravina A, et al. Autologous chondrocyte implantation. A systematic review. *Osteoarthritis Cartilage* 2006 Jan;14(1):47-51.

Saris DB, et al. Treatment of symptomatic cartilage defects of the knee: characterized chondrocyte implantation results in better clinical outcome at 36 months in a randomized trial compared to microfracture. *Am J Sports Med* 2009 Nov;37 Suppl 1:10S-9S.

Schneider TE, et al. Matrix-induced autologous chondrocyte implantation (MACI) grafting for osteochondral lesions of the talus. *Foot Ankle Int* 2009 Sep;30(9):810-4.

Schneider U, et al. A prospective multicenter study on the outcome of type I collagen hydrogel-based autologous chondrocyte implantation (CaReS) for the repair of articular cartilage defects in the knee. *Am J Sports Med* 2011 Dec;39(12):2558-65.

Tetta C, et al. Knee osteochondral autologous transplantation: long-term MR finding and correlations. *Eur J Radiol* 2010 Oct;76(1):117-23.

Trinh TQ, et al. Improved outcomes with combined autologous chondrocyte implantation and patellofemoral osteotomy versus isolated autologous chondrocyte implantation. *Arthroscopy* 2013 March;29(3):566-574.

Van Assche D, et al. Physical activity levels after characterized chondrocyte implantation versus microfracture in the knee and the relationship to objective functional outcome with 2-year follow-up. *Am J Sports Med* 2009 Nov;37 Suppl 1:42S-9S.

Van Assche D, et al. Autologous chondrocyte implantation versus microfracture for knee cartilage injury: a prospective randomized trial, with 2-year follow-up. *Knee Surg Sports Traumatol Arthrosc* 2010 Apr;18(4):486-95.

Vanlauwe JJ, et al. Five-year outcome of characterized chondrocyte implantation versus microfracture of symptomatic cartilage defects of the knee: early treatment matters. *Am J Sports Med* 2011 Dec;39(12):2566-74.

Vanlauwe JJ, et al. Characterized chondrocyte implantation in the patellofemoral joint: an up to 4-year follow-up of a prospective cohort of 38 patients. *Am J Sports Med* 2012 Aug;40(8):1799-807.

Vasiliadis HS, et al. Autologous chondrocyte implantation for the treatment of cartilage lesions of the knee: a systematic review of randomized studies. *Knee Surg Sports Traumatol Arthrosc* 2010 Dec;18(12):1645-55.

Vasiliadis HS, et al. Autologous chondrocyte implantation for full thickness articular cartilage defects of the knee. *Cochrane Database Syst Rev* 2010 Oct 6:CD003323.

SUBJECT: AUTOLOGOUS CHONDROCYTE IMPLANTATION	EFFECTIVE DATE: 07/02/99 REVISED DATE: 02/01/01, 01/17/02, 03/20/03, 01/15/04, 01/20/05, 11/17/05, 07/20/06, 06/21/07, 05/14/08, 04/16/09, 05/27/10, 05/19/11, 05/24/12, 04/18/13, 03/20/14
POLICY NUMBER: 7.01.38 CATEGORY: Technology Assessment	PAGE: 9 OF: 9

Vasiliadis HS, et al. Autologous chondrocyte implantation in cartilage lesions of the knee: long-term evaluation with magnetic resonance imaging and delayed gadolinium-enhanced magnetic resonance imaging technique. *Am J Sports Med* 2010 May;38(5):943-9.

Vavken P, et al. Effectiveness of autologous chondrocyte implantation in cartilage repair of the knee: a systematic review of controlled trials. *Osteoarthritis Cartilage* 2010 Jun;18(6):857-63.

*Wasiak J, et al. Autologous cartilage implantation for full thickness articular cartilage defects of the knee. *Cochrane Database Syst Rev*. 2006 Jul 19;3:CD003323.

Welsch GH, et al. Evaluation of cartilage repair tissue after matrix-associated autologous chondrocyte transplantation using a hyaluronic-based or collagen-based scaffold with morphological MOCART scoring and biochemical T2mapping: preliminary results. *Am J Sports Med* 2010 May;38(5):934-42.

*Whittaker JP, et al. Early results of autologous chondrocyte implantation in the talus. *J Bone Joint Surg – Brit* 2005 Feb;87-B(2):179-83.

Zaslav K, et al. A prospective study of autologous chondrocyte implantation in patients with failed prior treatment for articular cartilage defect of the knee: results of the Study of the Treatment of Articular Repair (STAR) clinical trial. *Am J Sports Med* 2009 Jan;37(1):42-55.

Zeifang F, et al. Autologous chondrocyte implantation using the original periosteum-cover technique versus matrix-associated autologous chondrocyte implantation: a randomized clinical trial. *Am J Sports Med* 2010 May;38(5):924-933.

Zengerink M, et al. Treatment of osteochondral lesions of the talus: a systematic review. *Knee Surg Sports Traumatol Arthrosc* 2010 Feb;18(2):238-246.

*key article

KEY WORDS:

Carticel, De Novo ET, DeNovo NT, Matrix-induced, MACI, Minced cartilage, Neocartilage, Scaffold-induced

CMS COVERAGE FOR MEDICARE PRODUCT MEMBERS

Based on our review, autologous chondrocyte implantation is not addressed in National or Regional Medicare coverage determinations or policies.