

SUBJECT: CRYOSURGICAL TUMOR ABLATION	EFFECTIVE DATE: 10/25/99 REVISED DATE: 06/20/01, 06/20/02, 05/21/03, 05/19/04, 03/17/05, 02/16/06, 12/21/06, 12/20/07, 12/18/08, 11/19/09, 11/18/10, 10/20/11, 10/18/12, 08/15/13, 08/21/14
POLICY NUMBER: 7.01.03 CATEGORY: Technology Assessment	PAGE: 1 OF:12

- *If the member's subscriber contract excludes coverage for a specific service it is not covered under that contract. In such cases, medical policy criteria are not applied.*
- *Medical policies apply to commercial and Medicaid products only when a contract benefit for the specific service exists.*
- *Medical policies only apply to Medicare products when a contract benefit exists and where there are no National or Local Medicare coverage decisions for the specific service.*

POLICY STATEMENT:

- I. Based upon our criteria and assessment of peer-reviewed literature, cryosurgical ablation of renal tumors is considered a **medically appropriate** treatment option in the following circumstances:
 - A. Patients with a solitary kidney or renal insufficiency; defined by a glomerular filtration rate (GFR) of less than 60 mL/m²; OR
 - B. Patients with a contraindication to surgery (e.g., significant comorbidities, location or number of tumors preclude surgical intervention); AND
 - C. Tumor size is equal to or less than 4 cm.The comorbidities of patients unable to undergo surgery should not be so severe as to limit their life expectancy to less than one year.
- II. Based on our criteria and assessment of peer-reviewed literature, cryosurgical ablation is considered **investigational** as a primary treatment in patients with renal tumors who are surgical candidates.
- III. Based upon our criteria and assessment of peer-reviewed literature, cryosurgical tumor ablation has not been medically proven to be effective and is considered **investigational** as a treatment method for any other tumor, including but not limited to, primary/metastatic liver malignancies, breast tumors (benign and malignant), pulmonary tumors, and pancreatic cancer.

Refer to Corporate Medical Policy # 7.01.01 regarding Cryosurgery for Prostate Cancer.

Refer to Corporate Medical Policy #7.01.49 regarding Transcatheter Arterial Chemoembolization of Hepatic Tumors.

Refer to Corporate Medical Policy #7.02.32 regarding Radiofrequency Tumor Ablation.

Refer to Corporate Medical Policy # 7.01.69 regarding Selective Internal Radiation Therapy (SIRT).

Refer to Corporate Medical Policy # 7.01.78 regarding Peptide Receptor Radionuclide Therapy.

Refer to Corporate Medical Policy # 11.01.03 regarding Experimental and Investigational Services.

POLICY GUIDELINES:

The Federal Employee Health Benefit Program (FEHBP/FEP) requires that procedures, devices or laboratory tests approved by the U.S. Food and Drug Administration (FDA) may not be considered investigational and thus these procedures, devices or laboratory tests may be assessed only on the basis of their medical necessity.

DESCRIPTION:

Cryosurgical ablation is the oldest of the local thermal ablation techniques. Cryosurgical ablation is a method of in situ tumor ablation in which subfreezing temperatures are delivered through penetrating or surface cryoprobes in which a cryogen is circulated. Cell death is caused by direct freezing, denaturation of cellular proteins, cell membrane rupture, cell dehydration and ischemic hypoxia. Cryosurgical ablation may be used for the destruction of metastatic tumors in situ or for the destruction of microscopic residual carcinoma in the case of close surgical margins. It may be performed as an open surgical technique or as a closed procedure either under laparoscopic or percutaneous ultrasound/MRI guidance.

SUBJECT: CRYOSURGICAL TUMOR ABLATION POLICY NUMBER: 7.01.03 CATEGORY: Technology Assessment	EFFECTIVE DATE: 10/25/99 REVISED DATE: 06/20/01, 06/20/02, 05/21/03, 05/19/04, 03/17/05, 02/16/06, 12/21/06, 12/20/07, 12/18/08, 11/19/09, 11/18/10, 10/20/11, 10/18/12, 08/15/13, 08/21/14 PAGE: 2 OF: 12
--	---

Cryosurgery has been proposed as a treatment of unresectable liver tumors, of bronchogenic/lung cancer, of renal cell carcinoma as a nephron-sparing procedure, as a nonsurgical alternative to surgical excision of breast fibroadenomas and breast cancer and as a treatment for pancreatic cancer.

RATIONALE:

The literature on the use of cryosurgical ablation of tumors consists primarily of reports of single-center case series; however, evidence is accumulating that cryoablation provides acceptable tumor control and a survival benefit for carefully selected patients with small renal cell carcinomas. Based on the current evidence (large numbers of patients treated with follow-up), cryoablation of small (4 cm or less) renal cancers appears to be an effective treatment in those patients who are not surgical candidates due to comorbid conditions or who have baseline renal insufficiency such that standard surgical procedures would impair their kidney function.

The current evidence on cryoablation for all other indications consists largely of non-comparative, case series and is insufficient to permit conclusions concerning the effect of cryoablation on health outcomes. The outcomes of these case series are inconclusive due to heterogeneity of the patient populations being studied and to the lack of long-term data on the effectiveness of cryosurgical ablation on overall survival. Most case series report only short-term outcomes such as tumor response in terms of shrinkage and tumor recurrence. Comparative studies with already established treatments, larger numbers of subjects, and longer follow-up are needed.

Renal cancer:

In a 2010 Cochrane review, Nabi and colleagues review the evidence on the management of localized renal cell carcinoma (RCC). No randomized trials comparing cryoablation to open radical or partial nephrectomy were identified. One nonrandomized study compared laparoscopic partial nephrectomy with laparoscopic cryoablation using a matched paired-analysis and 3 retrospective studies. The review notes percutaneous cryoablation can successfully destroy small RCC and may be considered a treatment option in patients with serious comorbidities that pose surgical risks. The review concluded that high quality, randomized controlled trials (RCTs) are required in the management of localized RCC and that one area of emphasis should be the role of renal surgery compared to minimally invasive techniques for small tumors (less than 4 cm).

T Klatte, et al. performed a systematic review and cumulative analysis of oncological outcomes and perioperative complications of studies comparing laparoscopic cryoablation and partial nephrectomy. The authors concluded that both procedures are viable options for the management of patients with small renal masses. Compared to partial nephrectomy, laparoscopic cryoablation results in a higher risk of local tumor progression but a lower risk of perioperative complications. However this difference is strongly influenced by selection bias, and thus limited conclusions can be made regarding true differences in complications. Therefore, partial nephrectomy is the gold standard for small renal masses, but laparoscopic cryoablation may be indicated in selected patients with significant comorbidity.

Kunkle and Uzzo (2008) conducted a comparative meta-analysis evaluating cryoablation and radiofrequency ablation (RFA) as primary treatment for small renal masses. Forty-seven case series representing 1,375 renal tumors were analyzed. Of 600 lesions treated with cryoablation, 494 were biopsied before treatment versus 482 of 775 treated with RFA. The incidence of RCC with known pathology was 72% in the cryoablation group and 90% in the RFA group. The mean duration of follow-up after cryoablation was 22.5 months. Most studies used contrast enhanced imaging to determine treatment effect. Local tumor progression was reported in 31 of 600 (5%) lesions after cryoablation and in 100 of 775 (13%) lesions after RFA. Progression to metastatic disease was described in 6 of 600 (1%) lesions after cryoablation versus 19 of 775 (2.5%) after RFA. The authors caution that minimally invasive ablation generally has been performed selectively on older patients with smaller tumors, possibly resulting in selection bias; series of ablated lesions tend to have shorter post-treatment follow-up compared with tumors managed by surgical excision or active surveillance, and treatment efficacy may be overestimated in series that include tumors with unknown pathology.

Cestari et al (2004) reported their experience with laparoscopic renal cryoablation in select cases of small renal neoplasms (n = 37). Of the 35 patients with at least 6 months of followup, CT guided biopsy was performed in 25, who were negative for neoplasm. They concluded that laparoscopic renal cryoablation for small renal masses appear to be a safe,

SUBJECT: CRYOSURGICAL TUMOR ABLATION POLICY NUMBER: 7.01.03 CATEGORY: Technology Assessment	EFFECTIVE DATE: 10/25/99 REVISED DATE: 06/20/01, 06/20/02, 05/21/03, 05/19/04, 03/17/05, 02/16/06, 12/21/06, 12/20/07, 12/18/08, 11/19/09, 11/18/10, 10/20/11, 10/18/12, 08/15/13, 08/21/14 PAGE: 3 OF: 12
--	---

reproducible, minimally invasive technique. Medium term follow-up is encouraging, although further studies and prolonged follow-up are needed to access properly the role of this surgical technique. Gill et al (2005) came to similar conclusions in their case series of 56 patients with small renal tumors. At 3 year follow-up, 17 cryolesions (38%) had completely disappeared on MRI. Postoperative needle biopsy identified locally persistent/recurrent renal tumor in 2 patients, but only 39 pts (70%) were available for needle biopsy. The authors concluded that the 3-year outcomes following renal cryoablation were encouraging. Longer- term (5-year) data are necessary to determine the proper place of renal cryotherapy among minimally invasive, nephron sparing options.

Liver:

A 2000 BlueCross BlueShield TEC Assessment found insufficient data to permit conclusions regarding the effect of cryosurgical ablation on the health outcomes of patients with unresectable HCC or metastatic liver disease. This conclusion applied to performing cryosurgery alone, as an adjunct to surgical resection or combined with other ablative therapies. Peer-reviewed literature published since the 2000 TEC Assessment consist mainly of uncontrolled case series with heterogeneity in the sample population and still do not provide conclusive evidence on the overall survival benefit of cryosurgical ablation (e.g., Gurusamy, et al. 2009; Zhou, et al. 2009; NICE Dec 2010). Awad et al, (2010) conducted a systematic review to evaluate the potential benefits and harms of cryotherapy for the treatment of hepatic carcinoma. No randomized or quasi-randomized trials were identified. However, they found 2 cohort studies (2 prospective and 2 retrospective). Only one of the studies could be included for the assessment of benefit. The authors concluded that at present, there is no evidence to recommend or refute cryotherapy for patients with hepatocellular carcinoma. Large, well-designed randomized clinical trials are feasible and necessary to define the role of cryotherapy in the treatment of HCC.

Breast:

While the use of cryoablation for the treatment of breast fibroadenoma has gained in popularity, there is insufficient published literature to demonstrate the efficacy of this procedure. Kaufman, et al (2002, 2004, 2005) reported on the outcomes of cryoablation in patients with breast fibroadenomas. Though outcome data has been reported at a mean of 2.6 years, there are several limitations to the studies, including that the studies came from a single investigator group, and did not include a direct comparison to surgical excision. Also, the 2005 case series of Kaufman et al, reported on only 29 patients in their efficacy data. Although this procedure may offer a less invasive method of treating breast fibroadenomas, the long-term outcome of this procedure is unknown. Studies of cryoablation of breast carcinomas have been limited to preliminary evaluation studies. There are no studies directly comparing the effectiveness of cryoablation to surgical incision in treatment of breast carcinomas. Although cryoablation is less invasive than surgical incision, a key disadvantage of cryoablation is the lack of a tissue sample to examine histologically to ensure adequate surgical margins and complete removal of tumor.

Pfleiderer SO., et al (2005) investigated the use of cryoablation in 30 women with confirmed breast cancer. No viable tumor cells were found in excised specimens at 6 week follow-up in 24 patients. In five patients with larger lesions (greater than 23 mm), remnant ductal carcinoma in situ was detectable histologically beyond the margin of the cryosite in the specimens after open surgery. This feasibility study demonstrates promising results in small lesions, but is limited in its sample size and extremely short follow-up. Zhao and Wu conducted a systematic review (2010) of minimally-invasive ablative techniques of early-stage breast cancer. The review noted that studies on cryoablation for breast cancer are primarily limited to pilot and feasibility studies in the research setting. Complete ablation of tumors was found to be reported within a wide range of 36-83%. Since there are many outstanding issues, including patient selection criteria and the ability to precisely determine the size of tumors and achieve 100% tumor cell death, the reviewers noted minimally-invasive thermal ablation techniques for breast cancer treatment, including cryoablation, should be limited until results from prospective, randomized clinical trials become available.

Pancreatic:

Li and colleagues (2011) reported on a retrospective study of 142 patients with unresectable pancreatic cancer treated with palliative bypass with (n=68) or without cryoablation (n=74) from 1995 to 2002. Median dominant tumor sizes decreased from 4.3 cm to 2.4 cm in 36 of 55 patients (65%) 3 months after cryoablation. Survival rates were not significantly different between groups, with the cryoablation group surviving a median of 350 days versus 257 days in the

SUBJECT: CRYOSURGICAL TUMOR ABLATION	EFFECTIVE DATE: 10/25/99 REVISED DATE: 06/20/01, 06/20/02, 05/21/03, 05/19/04, 03/17/05, 02/16/06, 12/21/06, 12/20/07, 12/18/08, 11/19/09, 11/18/10, 10/20/11, 10/18/12, 08/15/13, 08/21/14
POLICY NUMBER: 7.01.03 CATEGORY: Technology Assessment	PAGE: 4 OF: 12

group that did not receive cryoablation. Complications overall were not significantly different between the 2 groups. However, a higher percentage of delayed gastric emptying occurred in the cryoablation group compared to the group that did not receive cryoablation (36.8% vs. 16.2%, respectively).

CODES: Number Description

Eligibility for reimbursement is based upon the benefits set forth in the member's subscriber contract.

CODES MAY NOT BE COVERED UNDER ALL CIRCUMSTANCES. PLEASE READ THE POLICY AND GUIDELINES STATEMENTS CAREFULLY

Codes may not be all inclusive as the AMA and CMS code updates may occur more frequently than policy updates.

Code Key: Experimental/Investigational = (E/I), Not medically necessary/ appropriate = (NMN).

CPT:	19105 (E/I)	Ablation, cryosurgical, of fibroadenoma, including ultrasound guidance, each fibroadenoma
	47371 (E/I)	Laparoscopy, surgical ablation of one or more liver tumor(s); cryosurgical
	47381 (E/I)	Ablation, open, of one or more liver tumor(s); cryosurgical
	50250	Ablation, open, one or more renal mass lesion(s), cryosurgical, including intraoperative ultrasound, if performed
	50593	Ablation, renal tumor(s), unilateral, percutaneous, cryotherapy
	76940	Ultrasound guidance for, and monitoring of, tissue ablation
	77013	Computed tomography guidance for, and monitoring of, parenchymal tissue ablation
	77022	Magnetic resonance guidance for, and monitoring of, parenchymal tissue ablation
	0340T (E/I)	Ablation, pulmonary tumor(s), including pleura or chest wall when involved by tumor extension, percutaneous, cryoablation, unilateral, includes imaging guidance

Copyright © 2014 American Medical Association, Chicago, IL

HCPCS:	C2618	Probe/needle, cryoablation
---------------	-------	----------------------------

ICD9:	Multiple diagnosis codes
--------------	--------------------------

ICD10:	Multiple diagnosis codes
---------------	--------------------------

REFERENCES:

*Adam R, et al. A comparison of percutaneous cryosurgery and percutaneous radiofrequency for unresectable hepatic malignancies. *Arch Surg* 2002 Dec;137:1332-9.

Agency for Healthcare Research and Quality. Comparative effectiveness review number 112. Local nonsurgical therapies for stage 1 and symptomatic obstructive non-small-cell lung cancer.

[<http://effectivehealthcare.ahrq.gov/ehc/products/366/1532/lung-cancer-nonsurgical-therapies-executive-130612.pdf>].accessed 7/8/14.

*American Society of Breast Surgeons (ASBS). Management of fibroadenomas of the breast. 2008 April. [<http://www.sanarus.com/assets/files/ASBS-Mgmt-of-Fibroadenomas-of-the-Breast%204-29-08.pdf>] accessed 6/18/14.

American Urological Association. Guideline for management of the clinical Stage I renal mass. [<https://www.auanet.org/education/guidelines/renal-mass.cfm>] accessed 6/18/14.

Aron M, et al. Laparoscopic renal cryoablation: 8-year, single surgeon outcomes. *J Urol* 2010 Mar;183(3):889-95.

SUBJECT: CRYOSURGICAL TUMOR ABLATION POLICY NUMBER: 7.01.03 CATEGORY: Technology Assessment	EFFECTIVE DATE: 10/25/99 REVISED DATE: 06/20/01, 06/20/02, 05/21/03, 05/19/04, 03/17/05, 02/16/06, 12/21/06, 12/20/07, 12/18/08, 11/19/09, 11/18/10, 10/20/11, 10/18/12, 08/15/13, 08/21/14 PAGE: 5 OF: 12
--	---

*Asimakopoulos G, et al. Cryosurgery for malignant endobronchial tumors: analysis of outcome. Chest 2005 Jun;127(6):2007-14.

*Atwell TD, et al. Percutaneous renal ablation: experience treating 115 tumors. J Urol 2008 Jun;179(6):2136-40.

Atwell TD, et al. Complications following 573 percutaneous renal radiofrequency and cryoablation procedures. J Vasc Interv Radiol 2012 Jan;23(1):48-54.

Autorino R, et al. Cryoablation for small renal tumors: current status and future perspectives. Urol Oncol 2012 Jul-Aug;30(4 Suppl):S20-7.

Awad T, et al. Cryotherapy for hepatocellular carcinoma. Cochrane Database Syst Rev 2009 Oct 7;(4):CD007611.

Bala MM, et al. Cryotherapy for liver metastases. Cochrane Database Syst Rev 2013 Jun 5;6:CD009058.

Berger A, et al. Cryoablation for renal tumors: current status. Curr Opin Urol 2009 Mar;19(2):138-42.

*Bandi G, et al. Cryoablation of small renal masses: assessment of the outcome at one institution. BJU Int 2007 Oct;100(4):798-801.

Bang HJ, et al. Percutaneous cryoablation of metastatic renal carcinoma for local tumor control: feasibility, outcomes, and estimated cost-effectiveness for palliation. J Vasc Interv Radiol 2012 Jun;23(6):770-7.

Bang HJ, et al. Percutaneous cryoablation of metastatic lesions from non-small-cell-lung carcinoma: initial survival, local control, and cost observations. J Vasc Interv Radiol 2012 Jun;23(6):761-9.

*Bertoletti L, et al. Bronchoscopic cryotherapy treatment of isolated endoluminal typical carcinoid tumor. Chest 2006 Nov;130(5):1405-11.

Beemster PW, et al. Laparoscopic renal cryoablation using ultrathin 17-gauge cryoprobes: mid-term oncological and functional results. BJU Int 2011 Aug;108(4):577-82.

BlueCross BlueShield Association. Medical Policy Reference Manual Policy #7.01.75. Cryosurgical ablation of primary or metastatic liver tumors. 2013 Dec 12.

BlueCross BlueShield Association. Medical Policy Reference Manual Policy #7.01.92. Cryosurgical ablation of miscellaneous solid tumors other than liver or prostate tumors. 2014 Jul 10.

*BlueCross BlueShield Association Technology Evaluation Center (TEC). Cryosurgical ablation of unresectable hepatic tumors. 2000 Nov;15(14).

Breen DJ, et al. Percutaneous cryoablation of renal tumours: outcomes from 171 tumours in 147 patients. BJU Int 2013 Oct;112(6):758-765.

Buy X, et al. Percutaneous renal cryoablation: prospective experience treating 120 consecutive tumors. AJR Am J Roentgenol 2013 Dec;201(6):1353-1361.

*Caleffi M, et al. Cryoablation of benign breast tumors: evolution of technique and technology. Breast 2004 Oct;13(5):397-407.

Callstrom MR, et al. Percutaneous image-guided cryoablation of painful metastases involving bone: multicenter trial. Cancer 2013 Mar 1;119(5):1033-41.

*Cestari A, et al. Laparoscopic cryoablation of solid renal masses: intermediate term followup. J Urol 2004 Oct;172 (4 Pt1):1267-70.

*Cha C, et al. Rationale for the combination of cryoablation with surgical resection of hepatic tumors. J Gastrointest Surg 2001 Mar-Apr;5(2):206-13.

*Christians KK, et al. Hepatocellular carcinoma: multimodality management. Surg 2001 Oct;130(4):554-9.

SUBJECT: CRYOSURGICAL TUMOR ABLATION POLICY NUMBER: 7.01.03 CATEGORY: Technology Assessment	EFFECTIVE DATE: 10/25/99 REVISED DATE: 06/20/01, 06/20/02, 05/21/03, 05/19/04, 03/17/05, 02/16/06, 12/21/06, 12/20/07, 12/18/08, 11/19/09, 11/18/10, 10/20/11, 10/18/12, 08/15/13, 08/21/14 PAGE: 6 OF: 12
--	---

*Chung MH, et al. Hepatic cytoreduction followed by a novel long-acting somatostatin analog: a paradigm for intractable neuroendocrine tumors metastatic to the liver. Surg 2001 Dec;130(6):954-62.

*Ciavattini A, et al. Pregnancy outcomes after laparoscopic cryomyolysis of uterine myomas: report of nine cases. J Min Invasive Gynecol 2006 Mar-Apr;13(2):141-4.

Colak E, et al. CT-guided percutaneous cryoablation of central lung tumors. Diagn Interv Radiol 2014 Apr 30 [Epub ahead of print].

*Davol PE, et al. Long-term results of cryoablation for renal cancer and complex renal masses. Urology 2006 Jul;68(1 Suppl):2-6.

*Deygas N, et al. Cryotherapy in early superficial bronchogenic carcinoma. Chest 2001 Jul;120:26-31.

*Dohi M, et al. MR-guided transvaginal cryotherapy of uterine fibroids with a horizontal open MRI system: initial experience. Radiat Med 2004 Nov-Dec;22(6):391-7.

El Dib R, et al. Cryoablation vs radiofrequency ablation for the treatment of renal cell carcinoma: a meta-analysis of case series studies. BJU Int 2012 Aug;110(4):510-6.

Emara AM, et al. Robot-assisted partial nephrectomy vs laparoscopic cryoablation for the small renal mass: redefining the minimally invasive “gold standard”. BJU Int 2014 Jan;113(1):92-9.

Faddegon S, et al. Does renal mass ablation provide adequate long-term oncologic control? Urol Clin North Am 2012 May;39(2):181-90.

Fairchild AH, et al. Percutaneous cryoablation of hepatic tumors adjacent to the gallbladder: Assessment of safety and effectiveness. J Vasc Interv Radiol 2014 Jun 3 [Epub ahead of print].

*Finlay IG, et al. Resection with cryotherapy of colorectal hepatic metastases has the same survival as hepatic resection alone. Eur J Surg Onc 2000;26:199-202.

*Finley DS, et al. Percutaneous and laparoscopic cryoablation of small renal masses. J Urol 2008 Aug;180(2):492-8.

Flanders VL, et al. Ablation of liver metastases: current status. J Vasc Interv Radiol 2010 Aug;21(8 Suppl):S14-22.

Geordiadas C, et al. Renal tumor ablation. Tech Vasc Interv Radiol 2013 Dec;16(4):230-8.

*Goel RK, et al. Probe ablative treatment for small renal masses: cryoablation vs. radio frequency ablation. Curr Opin Urol 2008 Sep;18(5):467-73.

*Goering JD, et al. Cryoablation and liver resection for noncolorectal liver metastases. Am J Surg 2002 Apr;183(4):384-9.

Goyal J, et al. Single-center comparative oncologic outcomes of surgical and percutaneous cryoablation for treatment of renal tumors. J Endourol 2012 Nov; 26(11):1413-9.

Graversen JA, et al. Laparoscopic ablation of renal neoplasms. J Endourol 2011 Feb;25(2):187-94.

Guazzoni G, et al. Oncologic results of laparoscopic renal cryoablation of clinical T1a tumors: 8 years experience in a single institution. Urology 2010 Sep;76(3):624-9.

Guillotreau J, et al. Robotic partial nephrectomy versus laparoscopic cyroablation for the small renal mass. Eur Urol 2012 May;61(5):899-904.

Gurusamy KS, et al. Liver resection versus other treatments for neuroendocrine tumours in patients with resectable liver metastases. Cochrane Database Syst Rev 2009 Apr 15;(2):CD007060.

Gurusamy KS, et al. Surgical resection versus non-surgical treatment for hepatic node positive patients with colorectal liver metastases. Cochrane Database Syst Rev 2010 Jan 20;(1):CD0066797.

SUBJECT: CRYOSURGICAL TUMOR ABLATION POLICY NUMBER: 7.01.03 CATEGORY: Technology Assessment	EFFECTIVE DATE: 10/25/99 REVISED DATE: 06/20/01, 06/20/02, 05/21/03, 05/19/04, 03/17/05, 02/16/06, 12/21/06, 12/20/07, 12/18/08, 11/19/09, 11/18/10, 10/20/11, 10/18/12, 08/15/13, 08/21/14 PAGE: 7 OF: 12
--	---

Haramis G, et al. Retrospective comparison of laparoscopic partial nephrectomy versus laparoscopic renal cryoablation for small (<3.5 cm) cortical renal masses. J Laparoendosc Adv Surg Tech A 2012 Mar;22(2):152-7.

*Hegarty NJ, et al. Probe-ablative nephron-sparing surgery: cryoablation versus radiofrequency ablation. Urol 2006 Jul;68(1 Suppl):7-13.

Heuer R, et al. A critical analysis of the actual role of minimally invasive surgery and active surveillance for kidney cancer. Eur Urol 2010 Feb;57(2):223-32.

*Hruby G, et al. Comparison of laparoscopic partial nephrectomy and laparoscopic cryoablation for renal hilar tumors. Urol 2006 Jan;(1):50-4.

*Hui GC, et al. Comparison of percutaneous and surgical approaches to renal tumor ablation: meta-analysis of effectiveness and complication rates. J Vasc Interv Radiol 2008 Sep;19(9):1311-20.

*Huang A, et al. Phase I study of percutaneous cryotherapy for colorectal metastasis. Br J Surg 2002 Mar;89(3):303-10.

Inoue M, et al. Percutaneous cryoablation of lung tumors: feasibility and safety. J Vasc Interv Radiol 2012 Mar;23(3):295-302.

*Jansen MC, et al. Outcome of regional and local ablative therapies for hepatocellular carcinoma: a collective review. Eur J Surg Oncol 2005 May;31(4):331-47.

*Johnson, DB et al. Defining the complications of cryoablation and radiofrequency ablation of small renal tumors: a multi-institutional review. J Urol 2004 Sep;172(3):874-7.

*Joosten J, et al. Cryosurgery and radiofrequency ablation for unresectable colorectal liver metastases. Eur J Surg Oncol 2005 Dec;31(10):1152-9.

*Junggraithmayr W, et al. Cryoablation of malignant liver tumors: results of a single center study. Hepatobil Pancreat Dis Int 2005 Nov;4(4):554-60.

*Kaufman CS, et al. Office-based ultrasound-guided cryoablation of breast fibroadenomas. Am J Surg 2002 Nov;184(5):394-400.

*Kaufman CS, et al. Office-based cryoablation of breast fibroadenomas: 12-month follow-up. J Am Coll Surg 2004 Jun;198(6):914-23.

*Kaufman CS, et al. Cryoablation treatment of benign breast lesions with 12-month follow-up. Am J Surg 2004 Oct;188(4):340-8.

*Kaufman CS, et al. Office-based cryoablation of breast fibroadenomas with long-term follow-up. Breast J 2005 Sep-Oct;11(5):344-50.

*Kawamura M, et al. Percutaneous cryoablation of small pulmonary malignant tumors under computed tomographic guidance with local anesthesia for nonsurgical candidates. J Thorac Cardiovasc Surg 2006 May;131(5):1007-13.

Keane MG, et al. Systematic review of novel ablative methods in locally advanced pancreatic cancer. World J Gastroenterol 2014 Mar 7;20(9):2267-78.

Kim, EH, et al. Percutaneous cryoablation of renal masses: Washington University experience of treating 129 tumours. BJU Int 2013 May;111(6):872-9.

Kimura M, et al. Minimally invasive surgery using ablative modalities for the localized renal mass. Int J Urol 2010 Mar;17(3):215-27.

Klatte T, et al. Laparoscopic cryoablation versus partial nephrectomy for the treatment of small renal masses: systematic review and cumulative analysis of observational studies. Eur Urol 2011 Sep;60(3):435-43.

SUBJECT: CRYOSURGICAL TUMOR ABLATION POLICY NUMBER: 7.01.03 CATEGORY: Technology Assessment	EFFECTIVE DATE: 10/25/99 REVISED DATE: 06/20/01, 06/20/02, 05/21/03, 05/19/04, 03/17/05, 02/16/06, 12/21/06, 12/20/07, 12/18/08, 11/19/09, 11/18/10, 10/20/11, 10/18/12, 08/15/13, 08/21/14 PAGE: 8 OF: 12
--	---

Klatte T, et al. Systematic review and meta-analysis of perioperative and oncologic outcomes of laparoscopic cryoablation versus laparoscopic partial nephrectomy for the treatment of small renal tumors. J Urol 2014 May;191(5):1209-17.

*Kovach SJ, et al. Cryoablation of unresectable pancreatic cancer. Surg 2002 Apr;131(4):463-4.

*Kunkle DA, et al. Cryoablation or radiofrequency ablation of small renal masses: a meta-analysis. Cancer 2008 Sep 24;113(10):2671-80.

Kutikov A, et al. Focal therapy for kidney cancer: a systematic review. Curr Opin Urol 2009 Mar;19(2):148-53.

Laguna MP, et al. Perioperative morbidity of laparoscopic cryoablation of small renal masses with ultrathin probes: a European multicentre experience. Eur Urol 2009 Aug;56(2):355-61.

Lee SH, et al. Endoscopic cryotherapy of lung and bronchial tumors: a systematic review. Korean J Intern Med 2011 Jun;26(2):137-44.

*Lehman DS, et al. Laparoscopic renal cryoablation: efficacy and complications for larger renal masses. J Endourol 2008 Jun;22(6):1123-7.

Levy D, et al. Current state of urological cryosurgery: prostate and kidney. BJU Int 2010 Mar;105(5):590-600.

Li J, et al. Tumour cryoablation combined with palliative bypass surgery in the treatment of unresectable pancreatic cancer: a retrospective study of 142 patients. Postgrad Med J 2011 Feb;87(1024):89-95.

*Littrup PJ, et al. Cryotherapy for breast adenomas. Radiol 2005 Jan;234(1):63-72.

Littrup, PJ, et al. Cryotherapy for breast cancer: a feasibility study without excision. J Vasc Interv Radiol 2009 Oct;20(10):1329-41.

Long CJ, et al. Percutaneous vs surgical cryoablation of the small renal mass: is efficacy compromised? BJU Int 2011 May;107(9):1376-80.

Manenti G, et al. Percutaneous local ablation of unifocal subclinical breast cancer: clinical experience and preliminary results of cryotherapy. Eur Radiol 2011 Nov;21(11):2344-53.

Martin J, et al. Meta-analysis of cryoablation versus microwave ablation for small renal masses: is there a difference in outcome? Diagn Interv Radiol 2013 Nov-Dec;19(6):501-7.

*Matin SF, et al. Nephron-sparing probe ablative therapy: long-term outcomes. Curr Opin Urol 2008 Mar;18(2):150-6.

McWilliams JP, et al. percutaneous ablation of hepatocellular carcinoma: current status. J Vasc Interv Radiol 2010 Aug;21(8 Suppl):S204-13.

*Mogami T, et al. Percutaneous MR-guided cryoablation for malignancies, with a focus on renal cell carcinoma. Int J Clin Oncol 2007 Apr;12(2):79-82.

*Morin J, et al. Magnetic resonance-guided percutaneous cryosurgery of breast carcinoma: technique and early clinical results. Can J Surg 2004 Oct;47(5):347-51.

Mues AC, et al. Results of kidney tumor cryoablation: renal function preservation and oncologic efficacy. World J Urol 2010 Oct;28(5):565-70.

Mues AC, et al. Comparisons of percutaneous and laparoscopic renal cryoablation for small (<3 cm) renal masses. J Endourol 2010 Jul;24(7):1097-100.

Nabi G, et al. Surgical management of localised renal cell carcinoma. Cochrane Database Syst Rev 2010 Mar 17;(3):CD006579.

National Comprehensive Cancer Network (NCCN). Clinical practice guidelines in oncology v.3.2014. Kidney cancer. [http://www.nccn.org/professionals/physician_gls/pdf/kidney.pdf] accessed 6/19/14.

SUBJECT: CRYOSURGICAL TUMOR ABLATION POLICY NUMBER: 7.01.03 CATEGORY: Technology Assessment	EFFECTIVE DATE: 10/25/99 REVISED DATE: 06/20/01, 06/20/02, 05/21/03, 05/19/04, 03/17/05, 02/16/06, 12/21/06, 12/20/07, 12/18/08, 11/19/09, 11/18/10, 10/20/11, 10/18/12, 08/15/13, 08/21/14 PAGE: 9 OF: 12
--	---

National Comprehensive Cancer Network (NCCN). Clinical practice guidelines in oncology v.2.2014. Pancreatic adenocarcinoma tumors. [http://www.nccn.org/professionals/physician_gls/pdf/pancreatic.pdf] accessed 6/19/14.

National Comprehensive Cancer Network (NCCN). Clinical practice guidelines in oncology v.2.2014. Neuroendocrine tumors. [http://www.nccn.org/professionals/physician_gls/pdf/neuroendocrine.pdf] accessed 6/19/14.

National Comprehensive Cancer Network (NCCN). Clinical practice guidelines in oncology v.2.2014. Small cell lung cancer. [http://www.nccn.org/professionals/physician_gls/pdf/sclc.pdf] accessed 6/19/14.

National Comprehensive Cancer Network (NCCN). Clinical practice guidelines in oncology v.3.2014. Colon cancer. [http://www.nccn.org/professionals/physician_gls/pdf/colon.pdf] accessed 6/19/14.

National Comprehensive Cancer Network (NCCN). Clinical practice guidelines in oncology v.2.2014. Hepatobiliary cancer. [http://www.nccn.org/professionals/physician_gls/pdf/hepatobiliary.pdf] accessed 6/19/14.

National Institute for Health and Clinical Excellence (NICE). Percutaneous cryotherapy for renal cancer. 2011 Jul [<http://www.nice.org.UK/>] accessed 6/19/14.

National Institute for Health and Clinical Excellence (NICE). Laparoscopic cryotherapy for renal cancer. 2011 Aug [<http://www.nice.org.UK/>] accessed 6/19/14.

National Institute for Health and Clinical Excellence (NICE). Cryotherapy for the treatment of liver metastases. 2010 Dec [<http://www.nice.org.UK/>] accessed 6/19/14.

*Neeleman N, et al. Cryosurgery as treatment modality for colorectal liver metastases. Hepatogastroenterol 2001 Mar-Apr;48(38):325-9.

*Niu R, et al. Recurrence and survival outcomes after hepatic resection with or without cryotherapy for liver metastases from colorectal carcinoma. Ann Surg Oncol 2007 Jul;14(7):2078-87.

Ng KM, et al. Two decades of experience with hepatic cryotherapy for advanced colorectal metastases. Ann Surg Oncol 2012 Apr;19(4):1276-83.

*Nurko J, et al. Interim results from the FibroAdenoma Cryoablation Treatment Registry. Am J Surg 2005 Oct;190(4):647-51.

*Paganini AM, et al. Cryosurgical ablation of hepatic colorectal metastases. Surg Oncol 2007 Dec;16(Suppl 1):S137-40.

Pathak S, et al. Ablative therapies for colorectal liver metises: a systematic review. Colorectal Dis 2011 Sep;13(9):e252-65.

*Permpongkosol S, et al. Percutaneous renal cryoablation. Urol 2006 Jul;68(1 Suppl):19-25.

*Pfleiderer SO, et al. Ultrasound-guided, percutaneous cryotherapy of small (< or=15 mm) breast cancer. Invest Radiol 2005 Jul;40(7):472-7.

Pirasteh A, et al. Cryoablation vs. radiofrequency ablation for small renal masses. Acad Radiol 2011 Jan;18(1):97-100.

*Pusztaszeri M, et al. Histopathological study of breast cancer and normal breast tissue after magnetic resonance-guided cryotherapy ablation. Cryobiol 2007 Aug;55(1):44-51.

*Rehrig S, et al. 5 year qualitative results of isolated cryosurgical ablation for hepatic malignancy at Walter Reed Army Medical Center. Current Surg 2001 Jan;58(1):81-5.

*Rouibidoux MA, et al. Small (<2.0 cm) breast cancers: mammographic and US findings at US-guided cryoablation- initial experience. Radiol 2004 Dec;233(3):857-67.

*Ruers TJ, et al. Long-term results of treating hepatic colorectal metastases with cryosurgery. Br J Surg 2001 Jun;88(6):844-9.

SUBJECT: CRYOSURGICAL TUMOR ABLATION POLICY NUMBER: 7.01.03 CATEGORY: Technology Assessment	EFFECTIVE DATE: 10/25/99 REVISED DATE: 06/20/01, 06/20/02, 05/21/03, 05/19/04, 03/17/05, 02/16/06, 12/21/06, 12/20/07, 12/18/08, 11/19/09, 11/18/10, 10/20/11, 10/18/12, 08/15/13, 08/21/14 PAGE: 10 OF: 12
--	--

*Ruers TJ, et al. Comparison between local ablative therapy and chemotherapy for non-resectable colorectal liver metastases: a prospective study. Ann Surg Oncol 2007 Mar;14(3):1161-9.

*Rukstalis DB, et al. Clinical experience with open renal cryo-ablation. Urol 2001 Jan;57(1):34-9.

*Sabel MS, et al. Cryoablation of early-stage breast cancer: work in progress report of a multi-institutional trial. Ann Surg Oncol 2004 May;11(5):542-9.

*Sahoo S, et al. Pathologic evaluation of cryoprobe-assisted lumpectomy for breast cancer. Am J Clin Pathol 2007 Aug;128(2):239-44.

Saxena A, et al. Optimizing the surgical effort in patients with advance neuroendocrine neoplasm hepatic metastases: a critical analysis of 40 patients treated by hepatic resection and cryoablation. Am J Clin Oncol 2012 Oct;35(5):439-45.

Schmit GD, et al. Percutaneous cryoablation of anterior renal masses: technique, efficacy, and safety. AJR AM J Roentgenol 2010 Dec;195(6):1418-22.

*Seifert JK, et al. Liver resection or cryotherapy for colorectal metastases: a prospective case control study. Int J Colorectal Dis 2005 Nov;20(6):507-20.

Schmit GD, et al. Percutaneous cryoablation of renal masses ≥ 3 cm: efficacy and safety. J Endourol 2010 Apr 9 [Epub ahead of print].

*Schwartz BF, et al. Cryoablation of small peripheral renal masses: a retrospective analysis. Urol 2006 Jul;68(1 Supp):14-8.

*Sheen AJ, et al. Cryotherapeutic ablation of liver tumors. Br J Surg 2002 Nov;89(11):1396-401.

*Sheen AJ, et al. The end of cryotherapy for the treatment of unresectable hepatic tumors? Ann Surg Oncol 2005 Mar;12(3):202-4.

*Shingleton WB, et al. Percutaneous renal tumor cryoablation with magnetic resonance imaging guidance. J Urol 2001 Mar;165(3):773-6.

*Silverman SG, et al. Renal tumors: MR imaging-guided percutaneous cryotherapy- initial experience in 23 patients. Radiol 2005 Aug;236(2):716-24.

Spreafico C, et al. CT-guided percutaneous cryoablation of renal masses in selected patients. Radiol Med 2012 Jun;117(4):593-605.

*Stein RJ, et al. Renal cryotherapy: a detailed review including a 5-year follow-up. BJU Int 2007 May;99(5 Pt B):1265-70.

Strom KH, et al. Second prize: recurrence rates after percutaneous and laparoscopic cryoablation of small renal masses: does the approach make a difference? J Endourol 2011 Mar;25(3):371-5.

Tanagho YS, et al. Laparoscopic cryoablation of renal masses: single-center long-term experience. Urology 2012 Aug;80(2):307-14.

Tanagho YS, et al. Renal cryoablation versus robot-assisted partial nephrectomy: Washington University long-term experience. J Endo Urol 2013 Dec;27(12):1477-86.

Tang K, et al. Laparoscopic renal cryoablation versus laparoscopic partial nephrectomy for the treatment of small renal masses: A systematic review and meta-analysis of comparative studies. J Laparoendo Adv Surg Tech A 2014 Jun;24(6):403-10.

Tao Z, et al. Safety and effectiveness of cryosurgery on advanced pancreatic cancer: a systematic review. Pancreas 2012 Jul;41(5):809-11.

SUBJECT: CRYOSURGICAL TUMOR ABLATION POLICY NUMBER: 7.01.03 CATEGORY: Technology Assessment	EFFECTIVE DATE: 10/25/99 REVISED DATE: 06/20/01, 06/20/02, 05/21/03, 05/19/04, 03/17/05, 02/16/06, 12/21/06, 12/20/07, 12/18/08, 11/19/09, 11/18/10, 10/20/11, 10/18/12, 08/15/13, 08/21/14 PAGE: 11 OF: 12
--	--

Tsivian M, et al. Tumor size and endophytic growth pattern affect recurrence rates after laparoscopic renal ablation. *Urology* 2010 Feb;75(2):307-10.

*Tuncali K, et al. MRI-guided percutaneous cryotherapy for soft tissue and bone metastases: initial experience. *AJR* 2007 Jul;189(1):232-9.

Turna B, et al. Minimally invasive nephron sparing management for renal tumors in solitary kidneys. *J Urology* 2009 Nov;182(5):2150-7.

*van Esser S, et al. Minimally invasive ablative therapies for invasive breast carcinomas: an overview of current literature. *World J Surg* 2007 Dec;31(12):2284-92.

Van Poppell H, et al. Treatment of localized renal cell carcinoma. *Eur Radiol* 2011 Oct;60(4):662-72.

Vricella GJ, et al. Percutaneous cryoablation of renal masses: impact of patient selection and treatment parameters on outcomes. *Urology* 2011 Mar;77(3):649-54.

*Weld KJ, et al. Laparoscopic cryoablation for small renal masses: three year follow-up. *Urol* 2007 Mar;69(3):448-51.

Whitson JM, et al. Population-based comparative effectiveness of nephron-sparing surgery vs ablation for small renal masses. *BJU Int* 2012 Nov;110(10):1438-43.

*Whitworth PW, et al. Cryoablation and cryolocalization in the management of breast disease. *J Surg Oncol* 2005 Apr 1;90(1):1-9.

*Xu KC, et al. Percutaneous cryosurgery for the treatment of hepatic colorectal metastases. *World J Gastroenterol* 2008 Mar 7;14(9):1430-6.

Xu KC, et al. Cryosurgery with combination of (125) iodine seed implantation for the treatment of locally advanced pancreatic cancer. *J Dig Dis* 2008 Feb;91(1):32-40.

Xu KC, et al. Sequential use of transarterial chemoembolization and percutaneous cryosurgery for hepatocellular carcinoma. *World J Gastroenterol* 2009;15(29):3664-9.

Yamauchi Y, et al. Percutaneous cryoablation for the treatment of medically inoperable stage 1 non-small cell lung cancer. *PLoS One* 2012;7(3):e33223.

*Yan TD, et al. Recurrence after complete cryoablation of colorectal liver metastases: analysis of prognostic features. *Am Surg* 2006 May;72(5):382-90.

Yang Y, et al. Outcomes of ultrasound-guided percutaneous argon-helium cryoablation of hepatocellular carcinoma. *J Hepatobiliary Pancreat Sci* 2012 Nov;19(6):674-84.

Zhang ZM, et al. Therapeutic options for intermediate-advanced hepatocellular carcinoma. *World J Gastroenterol* 2011 Apr 7;17(13):1685-9.

Zhang X, et al. CT-guided conformal cryoablation for peripheral NSCLC: initial experience. *Eur J Radiol* 2012 Nov;8(11):3354-62.

Zhang W, et al. Percutaneous cryoablation of liver metastases from breast cancer: initial experience in 17 patients. *Clin Radiol* 2014 Mar;69(3):231-8.

Zhao Z, et al. Minimally-invasive thermal ablation of early-stage breast cancer: a systematic review. *Eur J Surg Oncol* 2010 Dec;36(12):1149-55.

*Zupi E, et al. Directed laparoscopic cryomyolysis: a possible alternative to myomectomy and/or hysterectomy for symptomatic leiomyomas. *Am J Obstet Gynecol* 2004 Mar;190(3):639-43.

SUBJECT: CRYOSURGICAL TUMOR ABLATION	EFFECTIVE DATE: 10/25/99 REVISED DATE: 06/20/01, 06/20/02, 05/21/03, 05/19/04, 03/17/05, 02/16/06, 12/21/06, 12/20/07, 12/18/08, 11/19/09, 11/18/10, 10/20/11, 10/18/12, 08/15/13, 08/21/14
POLICY NUMBER: 7.01.03 CATEGORY: Technology Assessment	PAGE: 12 OF: 12

KEY WORDS:

Cryoablation, Cryosurgery, Liver neoplasms.

CMS COVERAGE FOR MEDICARE PRODUCT MEMBERS

Based on our review, there is no specific regional or national coverage determination addressing cryosurgical tumor ablation other than the national coverage determination for cryosurgery of the prostate which is highlighted in a separate medical policy.