

SUBJECT: PEPTIDE RECEPTOR RADIONUCLIDE THERAPY (PRRT)	EFFECTIVE DATE: 06/21/07 REVISED DATE: 05/14/08, 04/16/09, 03/18/10, 03/17/11, 03/15/12, 02/21/13, 02/20/14
POLICY NUMBER: 7.01.78 CATEGORY: Technology Assessment	PAGE: 1 OF: 5

• If the member's subscriber contract excludes coverage for a specific service it is not covered under that contract. In such cases, medical policy criteria are not applied.

• Medical policies apply to commercial and Medicaid products only when a contract benefit for the specific service exists.

• Medical policies only apply to Medicare products when a contract benefit exists and where there are no National or Local Medicare coverage decisions for the specific service.

POLICY STATEMENT:

Based upon our criteria and assessment of peer-reviewed literature, peptide receptor radionuclide therapy has not been proven to medically effective and is considered **investigational** for the treatment of somatostatin-receptor positive tumors, including, but not limited to neuroendocrine tumors.

Refer to Corporate Medical Policy # 7.01.69 regarding Selective Internal Radiation Therapy (SIRT).

Refer to Corporate Medical Policy # 11.01.03 regarding Experimental and Investigational Services.

Refer to Corporate Medical Policy # 11.01.10 regarding Clinical Trials.

DESCRIPTION:

Somatostatin is a peptide hormone that regulates the endocrine system and affects neurotransmission and cell proliferation via an interaction with G-protein-coupled somatostatin receptors and inhibition of the release of numerous secondary hormones. Five somatostatin receptors have been identified and characterized with each of the receptors activating distinct signaling mechanisms within cells. Analogs of somatostatin have been synthesized that are smaller, more potent, longer-lasting and more specific in their biologic effects than natural somatostatin. Examples of these analogs include octreotide, lanreotide and vaptoreotide. Some of these analogs have become useful as medications for the treatment of acromegaly, or the treatment of diarrhea and flushing episodes associated with carcinoid syndrome.

Many types of neuroendocrine tumors express somatostatin receptors including, but not limited to, pancreatic islet cell tumors (e.g., gastrinomas, glucagonomas, GHRHomas, and nonfunctioning islet cell tumors), VIPomas, carcinoids, insulinomas, and some adrenal cortical and differentiated thyroid tumors. Somatostatin receptor (SSTR) scintigraphy has become an important image modality in patients with SSTR-positive tumors. SSTR scintigraphy involves the administration of a radiolabeled peptide tracer, which is targeted at the somatostatin receptor. A more intensified, targeted radiotherapy, known as peptide receptor radionuclide therapy (PRRT), has been proposed and investigated for those patients with inoperable or metastasized neuroendocrine tumors who suffer from debilitating symptoms, such as carcinoid syndrome.

Several radiolabeled somatostatin analogs are currently being investigated in the treatment of patients with SSTR-positive metastasized neuroendocrine tumors. These conjugates all consist of a somatostatin analog, such as octreotide or octreotide, a complexing moiety (or chelator) and a radionuclide. The chelator, which is attached to the somatostatin analog, allows a stable connection between the analog and the radionuclide. The basic principle of tumor-targeting after systemic administration of the conjugate involves binding to SSTRs, which are expressed on the cell surface of the tumor cell, followed by effective internalization of the radionuclide-peptide complex. The emitted radiation can damage the DNA, which may subsequently lead to the induction of cell death. Different combinations of radionuclides and somatostatin analogues are used to target the specific SSTR-positive tumor. These analogues differ from each other in their affinity for the various five SSTR subtypes. This variable affinity is important because it can have great influence on the clinical effectiveness of the radiolabeled somatostatin analog. Indium (111In), yttrium (90Y) and lutetium (177Lu) have been the most frequently used radionuclides for targeted radiotherapy in the various clinical trials thus far.

SUBJECT: PEPTIDE RECEPTOR RADIONUCLIDE THERAPY (PRRT) POLICY NUMBER: 7.01.78 CATEGORY: Technology Assessment	EFFECTIVE DATE: 06/21/07 REVISED DATE: 05/14/08, 04/16/09, 03/18/10, 03/17/11, 03/15/12, 02/21/13, 02/20/14 PAGE: 2 OF: 5
---	--

RATIONALE:

Currently, there are no radiolabeled somatostatin analog conjugates that are FDA approved specifically for use in PRRT. Clinical studies investigating neuroendocrine tumors, in particular, those treated with 90Y- and 177Lu-labelled somatostatin analogues, are very encouraging in terms of tumor shrinkage and palliation of symptoms. However, complete responses are unusual and there have been no demonstrated improvements in survival. Differences in treatment protocols, such as administered doses, dosing schemes, the tumor response criteria, and the heterogeneity of the patient sample population in the various studies have made it impossible to come to any definitive conclusions regarding the overall health benefit of this therapy. Therefore, trials with better defined protocols and patient populations are necessary to determine the optimal PRRT and treatment scheme.

CODES: Number Description

Eligibility for reimbursement is based upon the benefits set forth in the member's subscriber contract.

CODES MAY NOT BE COVERED UNDER ALL CIRCUMSTANCES. PLEASE READ THE POLICY AND GUIDELINES STATEMENTS CAREFULLY.

Codes may not be all inclusive as the AMA and CMS code updates may occur more frequently than policy updates.

*** No specific codes exist for PRRT, but the following codes could be billed:**

CPT:	78800 Radiopharmaceutical localization of tumor, or distribution of radiopharmaceutical agent(s); limited area 78801 multiple areas 78802 whole body, single day imaging 78803 tomographic (SPECT) 78804 whole body, requiring two or more days imaging
-------------	---

Copyright © 2014 American Medical Association, Chicago, IL

HCPCS:	A4641 Radiopharmaceutical, diagnostic, not otherwise classified A9543 Yttrium Y-90 ibritumomab tiuxetan, therapeutic, per treatment dose, up to 40 millicuries A9699 Radiopharmaceutical, therapeutic, not otherwise classified J2354 Injection, octreotide, nondepot form for subcutaneous or intravenous injection, 25 mcg
---------------	---

ICD9: Multiple diagnosis codes

ICD10: Multiple diagnosis codes

REFERENCES:

*Anthony LB, et al. Indium-111-pentetetotide prolongs survival in gastroenteropancreatic malignancies. *Semin Nucl Med* 2002 Apr;32(2):123-32.

Barber TW, et al. The potential for induction peptide receptor chemoradionuclide therapy to render inoperable pancreatic and duodenal neuroendocrine tumours resectable. *Eur J Surg Oncol* 2012 Jan;38(1):64-71.

Bartolomei M, et al. Peptide receptor radionuclide therapy with (90)Y-DOTATOC in recurrent meningioma. *Eur J Nucl Med Mol Imaging* 2009 Sep;36(9):1407-6.

*Bodei L, et al. Long-term evaluation of renal toxicity after peptide receptor radionuclide therapy with 90 Y-DOTATOC and 177Lu-DOTATE: the role of associated risk factors. *Eur J Nucl Med Mol Imaging* 2008 Oct;35(10):1847-65.

Bodei L, et al. Peptide receptor therapies in neuroendocrine tumors. *J Endocrinol Invest* 2009 Apr;32(4):360-9.

SUBJECT: PEPTIDE RECEPTOR RADIONUCLIDE THERAPY (PRRT)	EFFECTIVE DATE: 06/21/07 REVISED DATE: 05/14/08, 04/16/09, 03/18/10, 03/17/11, 03/15/12, 02/21/13, 02/20/14
POLICY NUMBER: 7.01.78 CATEGORY: Technology Assessment	PAGE: 3 OF: 5

Bodei L, et al. Peptide receptor radionuclide therapy (PRRT) of neuroendocrine tumors with somatostatin analogues. *Eur Rev Med Pharmacol Sci* 2010 Apr;14(4):347-51.

Bodei L, et al. Yttrium-labeled peptides for therapy of NET. *Eur J Nucl Med Mol Imaging* 2012 Feb;39(Suppl 1):S93-102.

Bodei L, et al. Peptide receptor radionuclide therapy with 177 Lu-DOTATATE: the IEO phase I-II study. *Eur J Nucl Med Mol Imaging* 2011 Dec;28(12):2125-35.

*Chinol M, et al. Receptor-mediated radiotherapy with Y-DOTA-DPhe-Tyr-octreotide: the experience of the European Institute of Oncology Group. *Semin Nucl Med* 2002 Apr;32(2):141-7.

*de Keizer B, et al. Hormonal crises following receptor radionuclide therapy with the radiolabeled somastatin analogue [(177)Lu-DOTA(0), Tr (3)] octreotide. *Eur J Nucl Med Mol Imaging* 2008 Apr;35(4):749-55.

*Delpassand ES, et al. Safety and efficacy of radionuclide therapy with high-activity In-111 pentetretide in patients with progressive neuroendocrine tumors. *Ca Biother Radiopharm* 2008 Jun;23(3):292-300.

*de Visser M, et al. Update: improvement strategies for peptide receptor scintigraphy and radionuclide therapy. *Ca Biother Radiopharm* 2008 Apr;23(2):137-57.

Ezziddin S, et al. Response and long-term control of bone metastases after peptide receptor radionuclide therapy with (177) Lu-octreotide. *J Nucl Med* 2011 Aug;52(8):1197-203.

*Forrer F, et al. Neuroendocrine tumors. Peptide receptor radionuclide therapy. *Best Pract Res Clin Endocrinol Metab* 2007 Mar;21(1):111-29.

*Forrer F, et al. Radiolabeled DOTATOC in patients with advanced paraganglioma and pheochromocytoma. *Q J Nucl Med Mol Imag* 2008 Dec;52(4):334-40.

Forrer F, et al. Bone marrow dosimetry in peptide receptor radionuclide therapy with [177Lu-DOTA(0), Tyr(3)] octreotide. *Eur J Nucl Med Mol Imaging* 2009 Jul;36(7):1138-46.

*Frilling A, et al. Treatment with (90)Y-and (177)-Lu-DOTATOC in patients with metastatic neuroendocrine tumors. *Surgery* 2006 Dec;140(6):968-76.

Grozinsky-Glasberg S, et al. peptide receptor radiogland therapy is an effective treatment for the long-term stabilization of malignant gastrinomas. *Cancer* 2010 Nov 8.[Epub ahead of print].

Gulenchyn KY, et al. Radionuclide therapy in neuroendocrine tumours: a systematic review. *Clin Oncol* 2012 May;24(4):294-308.

Hendisz A, et al. Locoregional and radioisotopic targeted treatment of neuroendocrine tumours. *Acta Gastroenterol Belg* 2009 Jan-Mar;72(1):44-8.

*Horsch D, et al. Longterm outcome of peptide receptor radionuclide therapy (PRRT) in 454 patients with progressive neuroendocrine tumors using yttrium-90 and lutetium-177 labeled somatostatin receptor targeting peptides. *J Clin Oncol* 2008;26;May 20 Suppl; abstract 4517.

Imhof A, et al. Response, survival, and long-term toxicity after therapy with the radiolabeled somatostatin analogue [90Y-DOTA]-TOC in metastasized neuroendocrine cancer. *J Clin Oncol* 2011 Jun 10;29(17):2416-23.

*Iten F, et al. Response to [90Yttrium-DOTA]-TOC treatment is associated with long-term survival benefit in metastasized medullary thyroid cancer: a phase II clinical trial. *Clin Cancer Res* 2007 Nov 15;13(22 Pt 1):6696-702.

Kam BL, et al. Lutetium-labeled peptides for therapy of neuroendocrine tumours. *Eur J Nucl Med Mol Imaging* 2012 Feb;39(Suppl 1):S103-12.

Khan S, et al. Quality of life in 265 patients with gastroenteropancreatic or bronchial neuroendocrine tumors treated with [177Lu-DOTA0,Tyr3] octreotide. *J Nucl Med* 2011 Sep;52(9):1361-8.

SUBJECT: PEPTIDE RECEPTOR RADIONUCLIDE THERAPY (PRRT)	EFFECTIVE DATE: 06/21/07 REVISED DATE: 05/14/08, 04/16/09, 03/18/10, 03/17/11, 03/15/12, 02/21/13, 02/20/14
POLICY NUMBER: 7.01.78 CATEGORY: Technology Assessment	PAGE: 4 OF: 5

*Khanna G, et al. Utility of radiolabeled somatostatin receptor analogues for staging/restaging and treatment of somatostatin receptor-positive pediatric tumors. Oncologist 2008 Apr;13(4):382-9.

Kong G, et al. High-administered activity In-111 octreotide therapy with concomitant radiosensitizing 5FU chemotherapy for treatment of neuroendocrine tumors: preliminary experience. Cancer Biotherm Radiopharm 2009 Oct;24(5):527-33.

Kreissl MC, et al. Combination of peptide receptor radionuclide therapy with fractionated external beam radiotherapy for treatment of advanced symptomatic meningioma. Radiation Oncol 2012 Jun 21;7:99.

*Kwekkeboom DJ, et al. Treatment of patients with gastroenteropancreatic (GEP) tumours with the novel radiolabelled somastatin analogue [¹⁷⁷Lu-DOTA⁰,Tyr³] octreotate. Eur J Nucl Med Mole Imaging 2003 Mar;30(3):417-22.

*Kwekkeboom DJ, et al. Treatment with the radiolabeled somatostatin analog [¹⁷⁷Lu-DOTA 0, Tyr3] octreotate: toxicity, efficacy and survival. J Clin Oncol 2008 May 1;26(13):2124-30.

Kwekkeboom DJ, et al. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: peptide receptor radionuclide therapy with radiolabeled somatostatin analogs. Neuroendocrinology 2009;90(2):220-6.

Kwekkeboom DJ, et al. Somatostatin receptor-based imaging and therapy of gastroenteropancreatic neuroendocrine tumors. Endocr Relat Cancer 2010 Jan 29;17(1):R53-73.

Kwekkeboom DJ, et al. Peptide receptor radionuclide therapy in patients with gastroenteropancreatic neuroendocrine tumors. Semin Nucl Med 2010 Mar;40(2):78-88.

Kwekkeboom DJ, et al. Somatostatin receptor-targeted radionuclide therapy in patients with gastroentero-pancreatic neuroendocrine tumors. Endocrinol Metab Clin North Am 2011 Mar;40(1):173-85.

Menda Y, et al. Phase I trial of 90Y-DOTATOC therapy in children and young adults with refractory solid tumors that express somatostatin receptors. J Nucl Med 2010 Oct;51(10):1524-31.

Muros MA, et al. Outcome of treating advanced neuroendocrine tumors with radiolabelled somatostatin analogues. Clin Transl Oncol 2009 Jan;11(1):48-53.

Nisa L, et al. Yttrium-90 DOTATOC therapy in GEP-NET and other SST2 expressing tumors: a selected review. Ann Nucl Med 2011 Feb;25(2):75-85.

Oh S, et al. Effect of peptide receptor radionuclide therapy on somatostatin receptor status and glucose metabolism in neuroendocrine tumors: Intraindividual comparison of Ga-68 DOTANOC PET/CT and F-18 FDG PET/CT. Int J Mol Imaging 2011;2011:524130.

Pach D, et al. Repeated cycles of peptide receptor radionuclide therapy (PRRT)- Results and side-effects of the radioisotope (90)-DOTA TATE. (177) Lu-DOTA TATE or (90)Y/(177) Lu-DOTA TATE therapy in patients with disseminated NET. Radiother Oncol 2012 Jan;102(1):45-50.

*Paganelli G, et al. Receptor-mediated radiotherapy with 90Y-DOTA-D-Phe1-Tyr3-octreotide. Eur J Nucl Med 2001 Apr;28(4):426-34.

Pool SE, et al. Preclinical and clinical trials of peptide receptor radionuclide therapy. Semin Nucl Med 2010 May;40(3):209-18.

Rolleman EJ, et al. Kidney protection during peptide receptor radionuclide therapy with somatostatin analogues. Eur J Nucl Med Mol Imaging 2010 May;37(5):1018-31.

Savelli G, et al. Final results of a phase 2A study for the treatment of metastatic neuroendocrine tumors with a fixed activity of (90) Y-DOTA-D-Phe1-Tyr3 octreotide. Cancer 2012 Jun 1;118(11):2915-24.

*Schumacher T, et al. Local injection of 90Y-labelled peptidic vector DOTATOC to control gliomas of WHO grades II and III: an extended pilot study. Eur J Nucl Med Mol Imaging 2002 Apr;29(4):486-93.

SUBJECT: PEPTIDE RECEPTOR RADIONUCLIDE THERAPY (PRRT)	EFFECTIVE DATE: 06/21/07 REVISED DATE: 05/14/08, 04/16/09, 03/18/10, 03/17/11, 03/15/12, 02/21/13, 02/20/14
POLICY NUMBER: 7.01.78 CATEGORY: Technology Assessment	PAGE: 5 OF: 5

Sierra ML, et al. Lymphocytic toxicity in patients after peptide-receptor radionuclide therapy (PRRT) with 177Lu-DOTATATE and 90Y-DOTATOC. *Cancer Biotherm Radiopharm* 2009 Dec;24(6):659-65.

Sowa-Staszczak A, et al. peptide receptor radionuclide therapy as a potential tool for neoadjuvant therapy in patients with inoperable neuroendocrine tumours (NETs). *Eur J Nucl Med Mol Imaging* 2011 Sep;38(9):1669-74.

Traub-Weidinger T, et al. Improved quality of life in patients treated with peptide radionuclides. *World J Nucl Med* 2011 Jul;10(2):115-21.

Turaga KK, et al. Recent progress in the understanding, diagnosis, and treatment of gastroenteropancreatic neuroendocrine tumors. *Ca Cancer J Clin* 2011 Mar-Apr;61(2):113-32.

*Valkema R, et al. Phase I study of peptide receptor radionuclide therapy with [In-DPTA] octreotide: the Rotterdam experience. *Semin Nucl Med* 2002 Apr;32(2):110-22.

*Valkema R, et al. Survival and response after peptide receptor radionuclide therapy with [90Y-DOTA0,Tyr3] octreotide in patients with advanced gastroenteropancreatic neuroendocrine tumors. *Semin Nucl Med* 2006 Apr;36(2):147-56.

*van Essen M, et al. Effects of therapy with [177Lu-DOTA0,Tyr3] octreotide in patients with paraganglioma, meningioma, small cell lung carcinoma, and melanoma. *J Nucl Med* 2006 Oct;47(10):1599-606.

van Essen M, et al. Peptide-receptor radionuclide therapy for endocrine tumors. *Nat Rev Endocrinol* 2009 Jul;5(7):382-93.

Van Vliet El, et al. Comparison of response evaluation in patients with gastroenteropancreatic and thoracic neuroendocrine tumors after treatment with [177Lu-DOTA0,Tr3]octreotide. *J Nucl Med* 2013 Oct;54(10):1689-96.

Vinjamuri S, et al. peptide receptor radionuclide therapy with (90)Y-DOTATATE/(90)Y-DOTATOC in patients with progressive, metastatic neuroendocrine tumours: assessment of response, survival and toxicity. *Br J Cancer* 2013 Apr 16;108(7):1440-8.

*Waldherr C, et al. Tumor response and clinical benefit in neuroendocrine tumors after 7.4 GBq ⁹⁰Y-DOTATOC. *J Nuc Med* 2002 May;43(5):610-6.

Zaknun JJ, et al. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. *Eur J Nucl Med Mol Imag* 2013 May;40(5):800-16.

* key article

KEY WORDS:

Peptide receptor radionuclide therapy, PRRT, PRRNT, Receptor-mediated radiotherapy, Radiolabeled nuclide therapy, somatostatin analog, ⁹⁰Y-DOTATOC, 177Lu-DOTA0,Tyr3, 90Y-DOTA0,Tyr3

CMS COVERAGE FOR MEDICARE PRODUCT MEMBERS

Based on our review, peptide receptor radionuclide therapy is not specifically mentioned in any National or Regional Medicare coverage determinations or policies.