

SUBJECT: SELECTIVE INTERNAL RADIATION THERAPY (SIRT) FOR HEPATIC TUMORS POLICY NUMBER: 7.01.69 CATEGORY: Technology Assessment	EFFECTIVE DATE: 12/15/05 REVISED DATE: 12/21/06, 12/20/07, 07/17/08, 08/20/09, 06/17/10, 06/16/11, 08/18/11, 08/16/12, 07/18/13, 06/19/14 PAGE: 1 OF: 9
<ul style="list-style-type: none"><i>If the member's subscriber contract excludes coverage for a specific service it is not covered under that contract. In such cases, medical policy criteria are not applied.</i><i>Medical policies apply to commercial and Medicaid products only when a contract benefit for the specific service exists.</i><i>Medical policies only apply to Medicare products when a contract benefit exists and where there are no National or Local Medicare coverage decisions for the specific service.</i>	

POLICY STATEMENT:

- I. Based upon our criteria and assessment of peer-reviewed literature, selective internal radiation therapy (SIRT) has been medically proven to be effective and is considered **medically appropriate** as a treatment for:
 - A. Primary hepatocellular carcinoma that is unresectable and limited to the liver (*See Policy Guidelines*);
 - B. Hepatic metastases from neuroendocrine tumors with diffuse and symptomatic disease when systemic therapy has failed to control symptoms;
 - C. As a bridge to transplant for patients with hepatocellular carcinoma who meet liver transplant criteria and are waiting liver transplantation; or
 - D. Unresectable hepatic metastases from colorectal carcinoma, in patients with liver-dominant disease who are refractory to chemotherapy or who are not candidates for chemotherapy (*see Policy Guidelines*).
- II. Based upon our criteria and assessment of peer-reviewed literature, selective internal radiation therapy (SIRT) has not been medically proven to be effective and is considered **investigational** as a treatment for all other metastatic or primary tumors of the liver.

Refer to Corporate Medical Policy #7.01.03 regarding Cryosurgical Tumor Ablation.

Refer to Corporate Medical Policy #7.01.49 regarding Transcatheter Arterial Chemoembolization of Hepatic Tumors.

Refer to Corporate Medical Policy # 7.01.78 regarding Peptide Receptor Radionuclide Therapy.

Refer to Corporate Medical Policy #7.02.32 regarding Radiofrequency Tumor Ablation.

Refer to Corporate Medical Policy #11.01.10 regarding Clinical Trials.

Refer to Corporate Medical Policy # 11.01.03 regarding Experimental and Investigational Services.

POLICY GUIDELINES:

- I. In general, SIRT is used for unresectable HCC that is greater than 3 cm.
- II. SIRT should be reserved for patients with adequate functional status (ECOG 0-2), adequate liver function and reserve, Child Pugh score A or B, and liver-dominant metastases. Patients should also have a life expectancy of greater than 3 months.
- III. The Federal Employee Health Benefit Program (FEHBP/FEP) requires that procedures, devices or laboratory tests approved by the U.S. Food and Drug Administration (FDA) may not be considered investigational and thus these procedures, devices or laboratory tests may be assessed only on the basis of their medical necessity.

DESCRIPTION:

Hepatic tumors can arise either as primary liver cancer or by metastasis to the liver from other tissues or organs. At present, surgical resection with tumor-free margins or liver transplantation are the only potentially curative treatments for hepatic cancer. Unfortunately, most hepatic tumors are not amenable to resection or transplantation at diagnosis, due either to their anatomic location, size, the number of lesions, concurrent nonmalignant liver disease, or insufficient hepatic reserve. Various minimally invasive ablative techniques have been investigated that seek to cure or palliate

SUBJECT: SELECTIVE INTERNAL RADIATION THERAPY (SIRT) FOR HEPATIC TUMORS POLICY NUMBER: 7.01.69 CATEGORY: Technology Assessment	EFFECTIVE DATE: 12/15/05 REVISED DATE: 12/21/06, 12/20/07, 07/17/08, 08/20/09, 06/17/10, 06/16/11, 08/18/11, 08/16/12, 07/18/13, 06/19/14 PAGE: 2 OF: 9
---	--

unresectable hepatic tumors by improving loco-regional control. Examples of these techniques include cryosurgical ablation, radiofrequency ablation and chemoembolization.

Selective internal radiation therapy (SIRT), another minimally invasive ablative method, relies on targeted delivery of small beads (microspheres) impregnated with yttrium-90 (90Y). Yttrium-90 is a beta emitter with a short half-life of 64.2 hours (2.67 days) that limits radiation hazard, while providing a clinically appropriate dose of radiotherapy. In SIRT, the radioactive material is directed into the left, right or common hepatic artery via a percutaneous (femoral or gastroduodenal) arterial catheter or a porta-cath. This allows the delivery of a concentrated dosage of radiation directly into the tumor bed, while conserving the normal liver tissue that surrounds the tumor. The size of the microspheres actually causes them to become entrapped within the tumor vasculature and retained within the tumor. The total radioactivity required by a patient is dependent on the extent and presentation of the tumor tissue. SIRT can usually be performed in an outpatient setting, as there is no radiation exposure to others once the microspheres have been infused.

SIRT has been investigated as a promising new technique due to several factors: 1) the liver parenchyma is sensitive to radiation; 2) the hepatic circulation is uniquely organized, whereby the normal liver derives 75% of its blood supply from the portal vein and malignant tumors in the liver derive nearly 100% of their blood supply from the hepatic artery; and 3) 90Y is a pure beta emitter with a relatively limited effective range and short half-life that helps focus the radiation and minimize its spread.

RATIONALE:

There are currently 2 types of Yttrium microspheres (glass and resin) that have been approved by the U.S. Food and Drug Administration (FDA): TheraSpheres® (Theragenics; Atlanta, GA) and SIR-Spheres® (Sirtex Medical Limited; Lake Forest, IL). The U.S. Food and Drug Administration (FDA) granted premarket approval of SIR-Spheres® in 2002 for use in combination with 5-fluorouridine (5-FUDR) chemotherapy by HAI to treat unresectable hepatic metastases from colorectal cancer. In contrast, TheraSpheres® were approved by humanitarian device exemption (HDE) in 1999 for use as monotherapy to treat unresectable HCC. In January 2007, the HDE for TheraSpheres® was expanded to include patients with hepatocellular carcinoma who have partial or branch portal vein thrombosis.

HCC:

Studies have demonstrated that SIRT/radioembolization is comparable to chemoembolization (which is considered to be therapy of choice) for patients with unresectable HCC in terms of tumor response and overall survival (e.g., Kulil, et al. 2008, Salem, et al. 2010, Carr, et al. 2010, Hilgard, et al. 2010). Disadvantages of chemoembolization include the necessity of multiple treatment sessions and hospitalization, its contraindication in patients with portal vein thrombosis, and its poorer tolerance by patients.

Neuroendocrine:

While studies investigating SIRT for neuroendocrine tumors have limitations such as heterogeneous patient populations, studies do report relief of symptoms from carcinoid syndrome in a proportion of patients. Surgical debulking of liver metastases has shown palliation of hormonal symptoms; debulking by radioembolization may lead to symptom relief in some patients (e.g., Sato, et al. 2008, Kennedy, et al. 2009, Cao, et al. 2010).

Metastatic colorectal cancer:

A major cause of morbidity and mortality in patients with colorectal disease metastatic to the liver is liver failure, as this disease tends to progress to diffuse, liver-dominant involvement. Therefore, the use of SIRT/radioembolization to decrease tumor bulk and/or halt the time to tumor progression and liver failure, may lead to prolonged progression free and overall survival in patients with no other treatment options (i.e., those with chemotherapy refractory liver-dominant disease). Other uses include palliation of symptoms from tumor bulk (e.g., Kennedy, et al. 2009, Mulcahy, et al. 2009, Cianni, et al. 2010, Hendlisz, et al. 2010).

Miscellaneous:

There is insufficient evidence to support the use of SIRT for liver metastases from other sites such as breast, pancreatic and cholangiocarcinoma. The outcome data from literature are inadequate at this time to draw positive conclusions related to the safety and efficacy of SIRT for these patient populations (e.g., Atassi, et al. 2008, Jakobs, et al. 2008, Saxena, et al. 2010, Cianni, et al. 2013).

SUBJECT: SELECTIVE INTERNAL RADIATION THERAPY (SIRT) FOR HEPATIC TUMORS	EFFECTIVE DATE: 12/15/05
POLICY NUMBER: 7.01.69	REVISED DATE: 12/21/06, 12/20/07, 07/17/08, 08/20/09, 06/17/10, 06/16/11, 08/18/11, 08/16/12, 07/18/13, 06/19/14
CATEGORY: Technology Assessment	PAGE: 3 OF: 9

CODES: Number Description

Eligibility for reimbursement is based upon the benefits set forth in the member's subscriber contract.

CODES MAY NOT BE COVERED UNDER ALL CIRCUMSTANCES. PLEASE READ THE POLICY AND GUIDELINES STATEMENTS CAREFULLY.

Codes may not be all inclusive as the AMA and CMS code updates may occur more frequently than policy updates.

CPT: No CPT codes specific to SIRT, but the following could be used:

37243 Vascular embolization or occlusion, inclusive of all radiological supervision and interpretation, intraprocedural roadmapping, and imaging guidance necessary to complete the intervention; for tumors, organ ischemia, or infarction

75894 Transcatheter therapy, embolization, any method, radiological supervision and interpretation

79445 Radiopharmaceutical therapy, by intra-arterial particulate administration

Copyright © 2014 American Medical Association, Chicago, IL

HCPCS: C2616 Brachytherapy source, yttrium 90

S2095 Transcatheter occlusion or embolization for tumor obstruction, percutaneous, any method, using yttrium-90 microspheres

ICD9: 155.0 Malignant neoplasm liver, primary

155.1 Malignant neoplasm intrahepatic bile ducts

155.2 Malignant neoplasm liver, NOS

153.0-153.9 Malignant neoplasm of colon code range

197.7 Malignant neoplasm liver, as secondary

ICD10: C18.0 Malignant neoplasm of cecum

C18.2 Malignant neoplasm of appendix

C18.3 Malignant neoplasm of hepatic flexure

C18.4 Malignant neoplasm of descending colon

C18.5 Malignant neoplasm of splenic flexure

C18.6 Malignant neoplasm of descending colon

C18.7 Malignant neoplasm of sigmoid colon

C18.8 Malignant neoplasm of overlapping sites of colon

C18.9 Malignant neoplasm of colon, unspecified

C22.0 Liver cell carcinoma

C22.1 Intrahepatic bile duct carcinoma

C22.2 Hepatoblastoma

C22.3 Angiosarcoma of liver

C22.4 Other sarcomas of liver

C22.7 Other specified carcinomas of liver

SUBJECT: SELECTIVE INTERNAL RADIATION THERAPY (SIRT) FOR HEPATIC TUMORS POLICY NUMBER: 7.01.69 CATEGORY: Technology Assessment	EFFECTIVE DATE: 12/15/05 REVISED DATE: 12/21/06, 12/20/07, 07/17/08, 08/20/09, 06/17/10, 06/16/11, 08/18/11, 08/16/12, 07/18/13, 06/19/14 PAGE: 4 OF: 9
---	--

- C22.8 Malignant neoplasm of liver, primary, unspecified as to type
- C22.9 Malignant neoplasm of liver, not specified as primary or secondary
- C78.7 Secondary malignant neoplasm of liver and intrahepatic bile duct

REFERENCES:

Ahmazdahfar H, et al. Radioembolization of liver tumors with yttrium-90 microspheres. *Semin Nucl Med* 2010 Mar;40(2):105-21.

American College of Radiology. Practice guideline for radioembolization with microsphere brachytherapy device (RMBD) for the treatment of liver malignancies. [<http://www.acr.org>] accessed 4/30/14.

*Atassi B, et al. Biliary sequelae following radioembolization with yttrium-90 microspheres. *J Vasc Interv Radiol* 2008 May;19(5):691-7.

*Atassi B, et al. Multimodality imaging following 90Y radioembolization: a comprehensive review and pictorial essay. *Radiographics* 2008 Jan-Feb;28(1):81-99.

Bester L, et al. Radioembolization versus standard care of hepatic metastases: comparative retrospective cohort study of survival outcomes and adverse events in salvage patients. *J Vasc Interv Radiol* 2012 Jan;23(1):96-105.

BlueCross BlueShield Association Medical Policy Reference Manual. Policy #8.01.43. Radioembolization for primary and metastatic tumors of the liver. 2014 Mar 13.

Bult W, et al. Microsphere radioembolization of liver malignancies: current developments. *Q J Nucl Med Mol Imag* 2009 Jun;53(3):325-35.

California Technology Assessment Forum. Selective internal radiation therapy or radioembolization for inoperable liver metastases from colorectal cancer. 2010 Feb [<http://ctaf.org/content/assessment>] accessed 4/30/14.

*Canadian Agency for Drugs and Technologies in Health. Issues in emerging health technologies. Yttrium-90 microspheres (TheraSphere® and SIR-Spheres®) for the treatment of unresectable hepatocellular carcinoma. Issue 2, Sept 2007 [www.cadth.ca] accessed 4/30/14.

Cao CQ, et al. Radioembolization with yttrium microspheres for neuroendocrine tumour liver metastases. *Br J Surg* 2010 Apr;97(4):537-43.

*Carr BI. Hepatic arterial 90Yttrium glass micro-spheres (Therasphere) for unresectable hepatocellular carcinoma: interim safety and survival data on 65 patients. *Liver Transpl* 2004 Feb;10(2 Suppl 1):S107-10.

Carr BI, et al. Therapeutic equivalence in survival for hepatic arterial chemoembolization and yttrium 90 microsphere treatment in unresectable hepatocellular carcinoma: a two cohort study. *Cancer* 2010 Mar 1;116 (5):1305-14.

Cianni R, et al. Radioembolization with (90) Y-labelled resin microspheres in the treatment of liver metastasis from breast cancer. *Eur Radiol* 2013 Jan;23(1):182-9.

Coldwell D, et al. Radioembolization in the treatment of unresectable liver tumors: experience across a range of primary cancer. *Am J Clin Oncol* 2012 Apr;35(2):167-77.

*Dancey JE, et al. Treatment of nonresectable hepatocellular carcinoma with intrahepatic 90Y-microspheres. *J Nucl Med* 2000 Oct;41(10):1673-81.

Deleporte A, et al. State of the art: radiolabeled microspheres treatment for liver malignancies. *Expert Opin Pharmacother* 2010 Mar;11(4):579-86.

Dunfee BL, et al. Yttrium-90 radioembolization for liver malignancies: prognostic factors associated with survival. *J Vasc Interv Radiol* 2010 Jan;21(1):90-5.

Garin E, et al. First experience of hepatic radioembolization using microspheres labeled with yttrium-90 (TheraSphere): practical aspects concerning its implementation. *Eur J Nucl Med Mol Imag* 2010 Mar;37(3):453-61.

SUBJECT: SELECTIVE INTERNAL RADIATION THERAPY (SIRT) FOR HEPATIC TUMORS POLICY NUMBER: 7.01.69 CATEGORY: Technology Assessment	EFFECTIVE DATE: 12/15/05 REVISED DATE: 12/21/06, 12/20/07, 07/17/08, 08/20/09, 06/17/10, 06/16/11, 08/18/11, 08/16/12, 07/18/13, 06/19/14 PAGE: 5 OF: 9
---	--

*Geschwind JF, et al. Yttrium-90 microspheres for the treatment of hepatocellular carcinoma. Gastroenterol 2004 Nov;127(5 Suppl 1):S194-205.

*Gray B, et al. Randomized trial of SIR-Spheres® plus chemotherapy vs chemotherapy alone for treating patients with liver metastases from primary large bowel cancer. Ann Oncol 2001;12(12):1711-20.

Gulec SA, et al. Yttrium-90 microsphere-selective internal radiation therapy with chemotherapy (chemo-SIRT) for colorectal cancer liver metastases: An in vivo double-arm- controlled phase II trial. Am J Clin Oncol 2012 Jun 14 [Epub ahead of print].

Gonsalves CF, et al. Radioembolization as salvage therapy for hepatic metastasis of uveal melanoma: a single-institution experience. AJR Am J Roentgenol 2011 Feb;196(2):468-73.

Haug AR, et al. 18 F-FDG PET/CT predicts survival after radioembolization of hepatic metastases from breast cancer. J Nucl Med 2012 Mar;53(3):371-7.

*Heckman JT, et al. Bridging locoregional therapy for hepatocellular carcinoma prior to liver transplantation. Ann Surg Oncol 2008 Nov;15(11):3169-77.

Hendlisz A, et al. Phase III trial comparing protracted intravenous fluorouracil infusion alone or with yttrium-90 resin micro-spheres radioembolization for liver-limited metastatic colorectal cancer refractory to standard chemotherapy. J Clin Oncol 2010 Aug 10;28(23):3687-94.

*Herba MJ, et al. Radioembolization for hepatic metastases. Semin Oncol 2002 Apr;29(2):152-9.

Hilgard P, et al. Radioembolization with yttrium-90 glass microspheres in hepatocellular carcinoma: European experience on safety and long-term survival. Hepatology 2010 Nov;52(5):1741-9.

Hoffmann RT, et al. Transarterial hepatic yttrium-90 radioembolization in patients with unresectable intrahepatic cholangiocarcinoma: factors associated with prolonged survival. Cardiovasc Interv Radiol 2012 Feb;35(1):105-16.

Hong K, et al. Salvage therapy for liver-dominant colorectal metastatic adenocarcinoma: comparison between transcatheter arterial chemoembolization versus yttrium-90 radioembolization. J Vasc Interv Radiol 2009 Mar;20(3):360-7.

*Ibrahim SM, et al. Treatment of unresectable cholangiocarcinoma using yttrium-90 microspheres: results from a pilot study. Cancer 2008 Oct 15;113(8):2119-28.

Inarrairaegui M, et al. Analysis of prognostic factors after yttrium-90 radioembolization of advanced hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 2010 Jan 5 [Epub ahead of print].

Inarrairaegui M, et al. Radioembolization with use of yttrium-90 resin microspheres in patients with hepatocellular carcinoma and portal vein thrombosis. J Vasc Interv Radiol 2010 Aug;21(8):1205-12.

Inarrairaegui M, et al. Response to radioembolization with yttrium-90 resin microspheres may allow surgical treatment with curative intent and prolonged survival in previously unresectable hepatocellular carcinoma. Eur J Surg Oncol 2012 Jul;38(7):594-601.

*Jakobs TF, et al. Radioembolization in patients with hepatic metastases from breast cancer. J Vasc Interv Radiol 2008 May;19(5):683-90.

*Jakobs TF, et al. Hepatic yttrium-90 radioembolization of chemotherapy-refractory colorectal cancer liver metastases. J Vasc Interv Radiol 2008 Aug;19(8):1187-95.

Kalinowski M, et al. Selective internal radiotherapy with Yttrium-90 microspheres for hepatic metastatic neuroendocrine tumors: a prospective single center study. Digestion 2009;79(3):137-42.

*Kalva SP, et al. Recent advances in transarterial therapy of primary and secondary liver malignancies. Radiographics 2008 Jan-Feb;28(1):101-17.

SUBJECT: SELECTIVE INTERNAL RADIATION THERAPY (SIRT) FOR HEPATIC TUMORS POLICY NUMBER: 7.01.69 CATEGORY: Technology Assessment	EFFECTIVE DATE: 12/15/05 REVISED DATE: 12/21/06, 12/20/07, 07/17/08, 08/20/09, 06/17/10, 06/16/11, 08/18/11, 08/16/12, 07/18/13, 06/19/14 PAGE: 6 OF: 9
---	--

*Kennedy AS, et al. Resin 90Y-microsphere brachytherapy for unresectable colorectal liver metastases: modern USA experience. Int J Radiat Oncol Biol Phys 2006 Jun 1;65(2):412-25.

*Kennedy AS, et al. Radioembolization for unresectable neuroendocrine hepatic metastases using resin 90 Y-microspheres: early results in 148 patients. Am J Clin Oncol 2008 Jun;31(3):271-9.

Kennedy AS, et al. Treatment parameters and outcome in 680 treatments of internal radiation with resin 90Y-microspheres for unresectable hepatic tumors. Int J Radiat Oncol Biol Phys 2009 Aug 1;74(5):1494-500.

Kennedy AS, et al. A first report of radioembolization for hepatic metastases from ocular melanoma. Cancer Invest 2009 Jul;27(6):682-90.

Kennedy A, et al. Radioembolization for the treatment of liver tumors general principles. Am J Clin Oncol 2012 Feb;35(1):91-9.

Kennedy A, et al. Integrating radioembolization ((90)Y microspheres) into current treatment options for liver tumors: introduction to the international working group report. Am J Clin Oncol 2012 Feb;35(1):81-90.

*King J, et al. Radioembolization with selective internal radiation microspheres for neuroendocrine liver metastases. Cancer 2008 Sep 1;113(5):921-9.

Klingensteiner A, et al. Radioembolization as locoregional therapy of hepatic metastases in uveal melanoma patients. Cardiovasc Interv Radiol 2013 Feb;36(1):158-65.

Kooby DA, et al. Comparison of yttrium-90 radioembolization and transcatheter arterial chemoembolization for the treatment of unresectable hepatocellular carcinoma. J Vasc Interv Radiol 2010 Feb;21(2):224-30.

Kucuk ON, et al. Selective intrarterial radionuclide therapy with Yttrium-90 (Y-90) microspheres for unresectable primary and metastatic liver tumors. World J Surg Oncol 2011 Aug 6;9:86.

*Kulik LM, et al. Yttrium-90 microspheres (TheraSphere®) treatment of unresectable hepatocellular carcinoma: downstaging to resection, RFA and bridge to transplantation. J Surg Oncol 2006;94(7):572-86.

*Kulik LM, et al. Safety and efficacy of 90Y radiotherapy for hepatocellular carcinoma with and without portal vein thrombosis. Hepatology 2008 Jan;47(1):71-81.

Lau WY, et al. Current role of selective internal irradiation with yttrium-90 microspheres in the management of hepatocellular carcinoma: A systematic review. Int J Radiat Oncol Biol Phys 2010 Sep 20 [Epub ahead of print].

Lewandowski RJ, et al. A comparative analysis of transarterial downstaging for hepatocellular carcinoma: chemoembolization versus radioembolization. Am J Transplant 2009 Aug;9(8):1920-8.

Liapi E, et al. Intra-arterial therapies for hepatocellular carcinoma: where do we stand? Ann Surg Oncol 2010 May;17(5):1234-46.

*Liu MD, et al. Use of Yttrium-90 Therasphere for the treatment of unresectable hepatocellular carcinoma. Am Surg 2004 Nov;70(11):947-53.

Martin LK, et al. Yttrium-90 radioembolization as salvage therapy for colorectal cancer with liver metastases. Clin Colorectal Ca 2012 Sep;11(3):195-9.

*Mancini R, et al. A multicentric phase II clinical trial on intra-arterial hepatic radiotherapy with 90yttrium SIR-spheres in unresectable, colorectal liver metastases refractory to i.v. chemotherapy: preliminary results on toxicity and response rates. In Vivo 2006 Nov-Dec;20 (6A):711-4.

Memon K, et al. Radioembolization for neuroendocrine liver metastases: safety, imaging and long-term outcomes. Int J Radiat Biol Phys 2012 Jul 1;83(3):887-94.

Michl M, et al. Radioembolization with yttrium-90 microspheres (SIRT) in pancreatic cancer patients with liver metastases: efficacy, safety, and prognostic factors. Oncology 2014;86(1):24-32.

SUBJECT: SELECTIVE INTERNAL RADIATION THERAPY (SIRT) FOR HEPATIC TUMORS POLICY NUMBER: 7.01.69 CATEGORY: Technology Assessment	EFFECTIVE DATE: 12/15/05 REVISED DATE: 12/21/06, 12/20/07, 07/17/08, 08/20/09, 06/17/10, 06/16/11, 08/18/11, 08/16/12, 07/18/13, 06/19/14 PAGE: 7 OF: 9
---	--

*Moroz P, et al. Effect of selective internal radiation therapy and hepatic arterial chemotherapy on normal liver volume and spleen volume. J Surg Oncol 2001 Dec;78(4):248-52.

Mouli S, et al. Yttrium-90 radioembolization for intrahepatic cholangiocarcinoma: safety, response, and survival analysis. J Vasc Interv Radiol 2013 Aug;24(8):1227-34.

Mulcahy MF, et al. Radioembolization of colorectal hepatic metastases using yttrium-90 microspheres. Cancer 2009 May 1;115(9):1849-58.

National Institute for Health and Clinical Excellence. Interventional procedure overview of selective internal radiation therapy for non-resectable colorectal metastases in the liver. Dec 2010 [www.nice.org.uk/] accessed 4/30/14.

Naymagon S, et al. Gastroduodenal ulceration associated with radioembolization for the treatment of hepatic tumors: an institutional experience and review of the literature. Dig Dis Sci 2010 Sep;55(9):2450-8.

Nicolay NH, et al. Liver metastases from colorectal cancer: radioembolization with systemic therapy. Nat Rev Clin Oncol 2009 Dec;6(12):687-97.

Paprottka PM, et al. Radioembolization of symptomatic, unresectable neuroendocrine hepatic metastases using yttrium-90 microspheres. Cardiovasc Interv Radiol 2012 Apr;35(2):334-42.

Piana PM, et al. Toxicities after radioembolization with yttrium-90 SIR-spheres: incidence and contributing risk factors at a single center. J Vasc Interv Radiol 2011 Oct;22(10):1373-9.

Pidru SM, et al. Prognostic value of 18f-fluorodeoxyglucose positron emission tomography-computed tomography in predicting survival in patients with unresectable metastatic melanoma to the liver undergoing yttrium-90 radioembolization. J Vasc Interv Radiol 2012 Jul;23(7):943-8.

Ramanathan R, et al. Multimodality therapy and liver transplantation for hepatocellular carcinoma: A 14-year prospective analysis of outcomes. Transplantation 2014 Feb 5 [Epub ahead of print].

*Rhee TK, et al. 90Y radioembolization for metastatic neuroendocrine liver tumors: preliminary results from a multi-institutional experience. Ann Surg 2008 Jun;247(6):1029-35.

Riaz A, et al. Complications following radioembolization with yttrium-90 microspheres: a comprehensive literature review. J Vasc Interv Radiol 2009 Sep;20(9):1121-30.

Riaz A, et al. Radiation segmentectomy: a novel approach to increase safety and efficacy of radioembolization. Int J Radiat Oncol Biol Phys 2011 Jan 1;79(1):163-71.

Rosenbaum CE, et al. Radioembolization for treatment of salvage patients with colorectal cancer liver metastases: a systematic review. J Nucl Med 2013 Nov;54(11):1890-5.

*Salem R, et al. Yttrium-90 microspheres: radiation therapy for unresectable liver cancer. J Vasc Interv Radiol 2002 Sep;13(9Pt 2):S223-9.

*Salem R, et al. Radioembolization with 90Ytrrium microspheres: A state-of-the-art brachytherapy treatment for primary and secondary liver malignancies: Part I: Technical and methodologic considerations. J Vasc Interv Radiol 2006 Aug;17(8):1251-78.

Salem R, et al. Radioembolization for hepatocellular carcinoma using yttrium-90 micro-spheres: a comprehensive report of long-term outcomes. Gastroenterol 2010 Jan;138(1):52-64.

*Sangro B, et al. Radioembolization using 90Y-resin microspheres for patients with advanced hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 2006 Aug 10.

Sangro B, et al. Survival after yttrium-90 resin microsphere radioembolization of hepatocellular carcinoma across Barcelona clinic liver cancer stages: a European evaluation. Hepatology 2011 Sep 2;54(3):868-78.

*Sato KT, et al. Unresectable chemorefractory liver metastases: radioembolization with 90 Y microspheres-safety, efficacy, and survival. Radiology 2008 May;247(2):507-15.

SUBJECT: SELECTIVE INTERNAL RADIATION THERAPY (SIRT) FOR HEPATIC TUMORS POLICY NUMBER: 7.01.69 CATEGORY: Technology Assessment	EFFECTIVE DATE: 12/15/05 REVISED DATE: 12/21/06, 12/20/07, 07/17/08, 08/20/09, 06/17/10, 06/16/11, 08/18/11, 08/16/12, 07/18/13, 06/19/14 PAGE: 8 OF: 9
---	--

Saxena A, et al. Factors predicting response and survival after yttrium-90 radioembolization of unresectable neuroendocrine tumor liver metastases: a critical appraisal of 48 cases. *Ann Surg* 2010 May;251(5):910-6.

Saxena A, et al. Yttrium-90 radiotherapy for unresectable intrahepatic cholangiocarcinoma: a preliminary assessment of this novel treatment option. *Ann Surg Oncol* 2010 Feb;17(2):484-91.

Saxena A, et al. Yttrium-90 radioembolization for unresectable, chemoresistant breast cancer liver metastases: a large single-center experience of 40 patients. *Ann Surg Oncol* 2014 Apr;21(4):1296-303.

Saxena A, et al. A systematic review on the safety and efficacy of yttrium-90 radioembolization for unresectable, chemorefractory colorectal cancer liver metastases. *J Cancer Res Clin Oncol* 2014 Apr;140(4):537-47.

Seidensticker R, et al. Matched-pair comparison of radioembolization plus best supportive care versus best supportive care alone for chemotherapy refractory liver-dominant colorectal metastases. *Cardiovasc Interv Radiol* 2012 Oct;35(5):1066-73.

Seinstra BA, et al. Transarterial radioembolization versus chemoembolization for the treatment of hepatocellular carcinoma (TRACE): study protocol for a randomized controlled trial. *Trials* 2012 Aug 23;13:144.

Smits ML, et al. Intra-arterial radioembolization of breast cancer liver metastases: a structured review. *Eur J Pharmacol* 2013 Jun 5;709(1-3):37-42.

*Steel J, et al. Quality of life in patients diagnosed with primary hepatocellular carcinoma: hepatic arterial infusion of Cisplatin versus 90-Yttrium microspheres (TheraSphere). *Psychooncol* 2004 Feb;13(2):73-9.

*Stubbs RS, et al. Selective internal radiation therapy with 90yttrium microspheres for extensive colorectal metastases. *J Gastrointest Surg* 2001 May-Jun;5(3):294-302.

Tohme S, et al. Yttrium-90 radioembolization as a bridge to liver transplantation: a single-institution experience. *J Vasc Interv Radiol* 2013 Nov;24(11):1632-8.

Townsend A, et al. Selective internal radiation therapy for liver metastases from colorectal cancer. Cochrane Database Syst Rev 2009 Oct 7;(4):CD007045.

Van De Wiele C, et al. Yttrium-90 labelled resin microspheres for treatment of primary and secondary malignant liver tumors. *Q J Nucl Mol Imaging* 2009 Jun;53(3):317-24.

*Van Hazel G, et al. Randomized phase 2 trial of SIR-Spheres plus fluorouracil/leucovorin chemotherapy versus fluorouracil/ leucovorin chemotherapy alone in advanced colorectal cancer. *J Surg Oncol* 2004 Nov 1;88(2):78-85.

Vente MA, et al. Yttrium-90 microsphere radioembolization for the treatment of liver malignancies: a structured meta-analysis. *Eur Radiol* 2009 Apr;19(4):951-9.

Vouche M, et al. Radiation lobectomy: time-dependent analysis of future liver remnant volume in unresectable liver cancer as bridge to resection. *J Hepatol* 2013 Nov;59(5):1029-36.

Woodall CE, et al. Is selective internal radioembolization safe and effective for patients with inoperable hepatocellular carcinoma and venous thrombosis? *J Am Coll Surg* 2009 Mar;208(3):375-82.

Yang TX, et al. Radioembolization and chemoembolization for unresectable neuroendocrine liver metastases- a systematic review. *Surg Oncol* 2012 Dec;21(4):299-308.

*Key articles

KEY WORDS:

Radioembolization, Sir-Spheres, Theraspheres, Transarterial Radioembolization (TARE)

SUBJECT: SELECTIVE INTERNAL
RADIATION THERAPY (SIRT) FOR
HEPATIC TUMORS
POLICY NUMBER: 7.01.69
CATEGORY: Technology Assessment

EFFECTIVE DATE: 12/15/05
REVISED DATE: 12/21/06, 12/20/07, 07/17/08, 08/20/09,
06/17/10, 06/16/11, 08/18/11, 08/16/12,
07/18/13, 06/19/14
PAGE: 9 OF: 9

CMS COVERAGE FOR MEDICARE PRODUCT MEMBERS

Based on our review, there is no specific national or regional coverage determination for selective internal radiation therapy.