

Vagus Nerve Stimulation

(70120)

Medical Benefit		Effective Date: 04/01/13	Next Review Date: 01/15
Preauthorization	Yes	Review Dates : 01/07, 05/08, 11/08, 03/09, 01/10, 01/11, 01/12, 01/13, 01/14	

The following Protocol contains medical necessity criteria that apply for this service. It is applicable to Medicare Advantage products unless separate Medicare Advantage criteria are indicated. If the criteria are not met, reimbursement will be denied and the patient cannot be billed. Preauthorization is required; supporting documentation must be submitted to Utilization Management or behavioral health services vendor for medical or mental health indications respectively. Please note that payment for covered services is subject to eligibility and the limitations noted in the patient's contract at the time the services are rendered.

Description

Stimulation of the vagus nerve can be performed by means of an implantable stimulator within the carotid artery sheath. This technique has been proposed as a treatment for refractory seizures, depression, and other disorders.

Background

Significant advances have occurred in surgical treatment for epilepsy and in medical treatment of epilepsy with newly developed and approved medications. Despite these advances, however, 25–50% of patients with epilepsy experience breakthrough seizures or suffer from debilitating adverse effects of antiepileptic drugs. Vagus nerve stimulation (VNS) has been investigated as a treatment alternative in patients with medically refractory partial-onset seizures for whom surgery is not recommended or for whom surgery has failed.

While the mechanisms for the therapeutic effects of vagal nerve stimulation are not fully understood, the basic premise of VNS in the treatment of various conditions is that vagal visceral afferents have a diffuse central nervous system projection, and activation of these pathways has a widespread effect on neuronal excitability. Surgery for implantation of a vagal nerve stimulator involves wrapping two spiral electrodes around the left vagus nerve within the carotid sheath. The electrodes are connected to an infraclavicular generator pack. The programmable stimulator may be programmed in advance to stimulate at regular times or on demand by patients or family by placing a magnet against the subclavicular implant site. In 1997, the U.S. Food and Drug Administration (FDA) approved a VNS device called the NeuroCybernetic Prosthesis (NCP®) system through the premarket approval (PMA) process. The device was approved for use in conjunction with drugs or surgery "as an adjunctive treatment of adults and adolescents over 12 years of age with medically refractory partial onset seizures."

Since 1997, it has been reported that recipients of a vagus nerve stimulator have experienced improvements in mood. Therefore, there has been research interest in VNS as a treatment for refractory depression. On July 15, 2005, Cyberonics received PMA supplement approval by the FDA for the VNS Therapy™ System "for the adjunctive long-term treatment of chronic or recurrent depression for patients 18 years of age or older who are experiencing a major depressive episode and have not had an adequate response to four or more adequate antidepressant treatments."

VNS therapy has also been investigated for use in other conditions such as headaches, obesity, and essential tremors.

Policy (Formerly Corporate Medical Guideline)

Vagus nerve stimulation may be considered **medically necessary** as a treatment of medically refractory seizures.

Vagus nerve stimulation is considered **investigational** as a treatment of other conditions including but not limited to heart failure, fibromyalgia, depression, essential tremor, obesity, and headaches.

Policy Guideline

Medically refractory seizures are defined as seizures that occur in spite of therapeutic levels of antiepileptic drugs or seizures that cannot be treated with therapeutic levels of antiepileptic drugs because of intolerable adverse effects of these drugs.

Vagal nerve stimulation requires not only the surgical implantation of the device, but also subsequent neurostimulator programming, which occurs intraoperatively and typically during additional outpatient visits.

Medicare Advantage

For Medicare Advantage, the seizures must be medically refractive *partial-onset* seizures for which surgery is not recommended or for which surgery has failed for vagus nerve stimulator to be considered **medically necessary**.

Services that are the subject of a clinical trial do not meet our Technology Assessment Protocol criteria and are considered investigational. For explanation of experimental and investigational, please refer to the Technology Assessment Protocol.

It is expected that only appropriate and medically necessary services will be rendered. We reserve the right to conduct prepayment and postpayment reviews to assess the medical appropriateness of the above-referenced procedures. Some of this Protocol may not pertain to the patients you provide care to, as it may relate to products that are not available in your geographic area.

References

We are not responsible for the continuing viability of web site addresses that may be listed in any references below.

- 1. Blue Cross and Blue Shield Association Technology Evaluation Center (TEC). Chronic vagus nerve stimulation for treatment of seizures. TEC Assessments 1998; Volume 13, Tab 9.
- 2. Amar AP, Levy ML, McComb JG et al. Vagus nerve stimulation for control of intractable seizures in childhood. Pediatr Neurosurg 2001; 34(4):218-23.
- 3. Murphy JV. Left vagal nerve stimulation in children with medically refractory epilepsy. The Pediatric VNS Study Group. J Pediatr 1999; 134(5):563-6.
- 4. Morris GL, 3rd, Mueller WM. Long-term treatment with vagus nerve stimulation in patients with refractory epilepsy. The Vagus Nerve Stimulation Study Group E01-E05. Neurology 1999; 53(8):1731-5.
- 5. Hornig G, Murphy JV, Schallert G et al. Left vagus nerve stimulation in children with refractory epilepsy: an update. South Med J 1997; 90(5):484-8.

- 6. Patwardhan RV, Stong B, Bebin EM et al. Efficacy of vagal nerve stimulation in children with medically refractory epilepsy. Neurosurgery 2000; 47(6):1353-8.
- 7. Tecoma ES, Iragui VJ. Vagus nerve stimulation use and effect in epilepsy: what have we learned? Epilepsy Behav 2006; 8(1):127-36.
- 8. Montavont A, Demarquay G, Ryvlin P et al. Long-term efficiency of vagus nerve stimulation (VNS) in non-surgical refractory epilepsies in adolescents and adults article in French. Rev Neurol (Paris) 2007; 163(12):1169-77.
- 9. You SJ, Kang HC, Kim HD et al. Vagus nerve stimulation in intractable childhood epilepsy: a Korean multicenter experience. J Korean Med Sci 2007; 22(3):442-5.
- 10. You SJ, Kang HC, Ko TS et al. Comparison of corpus callosotomy and vagus nerve stimulation in children with Lennox-Gastaut syndrome. Brain Dev 2008; 30(3):195-9.
- 11. Kostov H, Larsson PG, Roste GK. Is vagus nerve stimulation a treatment option for patients with drug-resistant idiopathic generalized epilepsy? Acta Neurol Scand Suppl 2007; 187:55-8.
- 12. Elger H, Hoppe C, Falkai P et al. Vagus nerve stimulation is associated with mood improvements in epilepsy patients. Epilepsy Res 2000; 42(3-Feb):203-10.
- 13. Blue Cross and Blue Shield Assocation Technology Evaluation Center (TEC). Vagus nerve stimulation for treatment-resistant depression. TEC Assessments 2006; Volume 21, Tab 7.
- 14. Blue Cross and Blue Shield Association Technology Evaluation Center (TEC). Vagus nerve stimulation for treatment-resistant depression. TEC Assessments 2005; Volume 21, Tab 7.
- 15. George MS, Rush AJ, Marangell LB et al. A one-year comparison of vagus nerve stimulation with treatment as usual for treatment-resistant depression. Biol Psychiatry 2005; 58(5):364-73.
- 16. Rush AJ, Marangell LB, Sackeim HA et al. Vagus nerve stimulation for treatment-resistant depression: a randomized, controlled acute phase trial. Biol Psychiatry 2005; 58(5):347-54.
- 17. U.S. Food and Drug Administration Center for Devices and Radiological Health. Summary of Safety and Effectiveness Data for the Vagus Nerve Stimulation (VNS) Therapy System. Available online at: http://www.fda.gov/ohrms/dockets/ac/04/briefing/4047b1_02_Summary%20of%20Safety%20and%20Effectiveness.pdf. Last accessed January, 2011.
- 18. Marangell LB, Rush AJ, George MS et al. Vagus nerve stimulation (VNS) for major depressive episodes: one-year outcomes. Biol Psychiatry 2002; 51(4):280-7.
- 19. Rush AJ, George MS, Sackheim HA et al. Vagus nerve stimulation (VNS) for treatment-resistant depression: a multicenter study. Biol Psychiatry 2000; 47(4):276-86.
- 20. Sackeim HA, Rush AJ, George MS et al. Vagus nerve stimulation (VNS) for treatment-resistant depression; efficacy, side effects and predictors of outcome. Neuropsychopharmacology 2001; 25(5):713-28.
- 21. Daban C, Martinez-Aran A, Cruz N et al. Safety and efficacy of Vagus Nerve Stimulation in treatment-resistant depression. A systematic review. J Affect Disord 2008; 110(1-2):1-15.
- 22. Corcoran CD, Thomas P, Phillips J et al. Vagus nerve stimulation in chronic treatment-resistant depression: preliminary findings of an open-label study. Br J Psychiatry 2006; 189:282-3.
- 23. Fitzgerald PB, Daskalakis ZJ. The use of repetitive transcranial magnetic stimulation and vagal nerve stimulation in the treatment of depression. Curr Opin Psychiatry 2008; 21(1):25-9.
- 24. Kennedy SH, Milev R, Giacobbe PCNfM et al. Neurostimulation therapies. J Affect Disord 2009; 117(suppl 1):S44-53.

- 25. Bajbouj M, Merkl A, Schlaepfer TE et al. Two-year outcome of vagus nerve stimulation in treatment-resistant depression. J Clin Psychopharmacol 2010; 30(3):273-81.
- 26. Marangell LB, Suppes T, Zboyan HA et al. A 1-year pilot study of vagus nerve stimulation in treatment-resistant rapid-cycling bipolar disorder. J Clin Psychiatry 2008; 69(2):183-9.
- 27. Cristancho P, Cristancho MA, Baltuch GH et al. Effectiveness and safety of vagus nerve stimulation for severe treatment-resistant major depression in clinical practice after FDA approval: outcomes at 1 year. J Clin Psychiatry 2011; 72(10):1376-82.
- 28. Handforth A, Ondo WG, Tatter S et al. Vagus nerve stimulation for essential tremor: a pilot efficacy and safety trial. Neurology 2003; 61(10):1401-5.
- 29. Mauskop A. Vagus nerve stimulation relieves chronic refractory migraine and cluster headaches. Cephalalgia 2005; 25(2):82-6.
- 30. Cecchini AP, Mea E, Tullo V et al. Vagus nerve stimulation in drug-resistant daily chronic migraine with depression: preliminary data. Neurol Sci 2009; 30(suppl 1):S101-4.
- 31. Bodenlos JS, Kose S, Borckardt JJ et al. Vagus nerve stimulation acutely alters food craving in adults with depression. Appetite 2007; 48(2):145-53.
- 32. De FGM, Crijns HJ, Borggrefe M et al. Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur Heart J 2011; 32(7):847-55. Available online at http://eurheartj.oxfordjournals.org/content/early/2010/10/28/eurheartj.ehq391.full. Last accessed January 11.
- 33. Lange G, Janal MN, Maniker A et al. Safety and efficacy of vagus nerve stimulation in fibromyalgia: a phase I/II proof of concept trial. Pain Med 2011; 12(9):1406-13.
- 34. Centers for Medicare and Medicaid Services National Coverage Determination (NCD) for Vagus Nerve Stimulation (VNS) (160.18), Implementation Date 7/23/2007.