

Protocol

Liver Transplant

(70306)

Medical Benefit	Effective Date: 07/01/14	Next Review Date: 01/15
Preadmission	Yes	Review Dates: 09/09, 09/10, 09/11, 01/12, 01/13, 01/14, 03/14

*The following Protocol contains medical necessity criteria that apply for this service. It is applicable to Medicare Advantage products unless separate Medicare Advantage criteria are indicated. If the criteria are not met, reimbursement will be denied and the patient cannot be billed. **Preadmission is required and must be obtained through Case Management.** Please note that payment for covered services is subject to eligibility and the limitations noted in the patient's contract at the time the services are rendered.*

Description

Liver transplantation is currently performed routinely as a treatment of last resort for patients with end-stage liver disease. Liver transplantation may be performed with liver donation after brain or cardiac death or with a liver segment donation from a living donor. Patients are prioritized for transplant by mortality risk and severity of illness criteria developed by the Organ Procurement and Transplantation Network (OPTN) and the United Network of Organ Sharing (UNOS). The severity of illness is determined by the model for end-stage liver disease (MELD) and pediatric end-stage liver disease (PELD) scores.

Background

Recipients

Liver transplantation is now routinely performed as a treatment of last resort for patients with end-stage liver disease. Liver transplantation may be performed with liver donation after brain or cardiac death or with a liver segment donation from a living donor. Patients are prioritized for transplant by mortality risk and severity of illness criteria developed by the Organ Procurement and Transplantation Network (OPTN) and the United Network of Organ Sharing (UNOS). The original liver allocation system was based on assignment to Status 1, 2A, 2B, or 3. Status 2A, 2B, and 3 were based on the Child-Turcotte-Pugh score, which included a subjective assessment of symptoms as part of the scoring system. In February 2002, Status 2A, 2B, and 3 were replaced with two disease severity scales: the model for end-stage liver disease (MELD) and pediatric end-stage liver disease (PELD) for patients younger than age 12 years scoring systems. In June 2013, OPTN/UNOS published its most recent allocation system, which previously expanded Status 1 to Status 1A and 1B in September 2012. (1) Status 1A patients have acute liver failure with a life expectancy of less than seven days without a liver transplant. Status 1A patients also include primary graft non-function, hepatic artery thrombosis and acute Wilson's disease. Status 1A patients must be recertified as Status 1A every seven days. Status 1B patients are pediatric patients (ages 0-17 years) with chronic liver disease listed as: fulminant liver failure, primary non-function, hepatic artery thrombosis, acute decompensated Wilson's disease, chronic liver disease; and non-metastatic hepatoblastoma. Pediatric patients move to Status 1A upon age 18 but still qualify for pediatric indications.

Following Status 1, donor livers will be prioritized to those with the highest scores on MELD or PELD. With this allocation system, the highest priority for liver transplantation is given to patients receiving the highest number of points. The scoring system for MELD and PELD is a continuous disease severity scale based entirely on objective laboratory values. These scales have been found to be highly predictive of the risk of dying from liver disease for patients waiting on the transplant list. The MELD score incorporates bilirubin, prothrombin time (i.e., international normalized ratio [INR]), and creatinine into an equation, producing a number that ranges from six

to 40. The PELD score incorporates albumin, bilirubin, INR growth failure, and age at listing. Waiting time will only be used to break ties among patients with the same MELD or PELD score and blood type compatibility. In the previous system, waiting time was often a key determinant of liver allocation, and yet, waiting time was found to be a poor predictor of the urgency of liver transplant because some patients were listed early in the course of their disease, while others were listed only when they became sicker. In the revised allocation systems, patients with a higher mortality risk and higher MELD/PELD scores will always be considered before those with lower scores, even if some patients with lower scores have waited longer. (2) Status 7 describes patients who are temporarily inactive on the transplant waiting list due to being temporarily unsuitable for transplantation.

Donors

Due to the scarcity of donor livers, a variety of strategies have been developed to expand the donor pool. For example, split graft refers to dividing a donor liver into two segments that can be used for two recipients. Living donor liver transplantation (LDLT) is now commonly performed for adults and children from a related or unrelated donor. Depending on the graft size needed for the recipient, either the right lobe, left lobe or the left lateral segment can be used for LDLT. In addition to addressing the problem of donor organ scarcity, LDLT allows the procedure to be scheduled electively before the recipient's condition deteriorates or serious complications develop. LDLT also shortens the preservation time for the donor liver and decreases disease transmission from donor to recipient.

Related Protocol

Small Bowel/Liver and Multivisceral Transplant

Policy (Formerly Corporate Medical Guideline)

A liver transplant, using a cadaver or living donor, is **medically necessary** for carefully selected patients with end-stage liver failure due to irreversibly damaged livers.

Etiologies of end-stage liver disease include, but are not limited to, the following:

A. Hepatocellular diseases

- Alcoholic liver disease
- Viral hepatitis (either A, B, C, or non-A, non-B)
- Autoimmune hepatitis
- Alpha-1 antitrypsin deficiency
- Hemochromatosis
- Non-alcoholic steatohepatitis
- Protoporphyria
- Wilson's disease

B. Cholestatic liver diseases

- Primary biliary cirrhosis
- Primary sclerosing cholangitis with development of secondary biliary cirrhosis
- Biliary atresia

C. Vascular disease

- Budd-Chiari syndrome

D. Primary hepatocellular carcinoma

- E. Inborn errors of metabolism
- F. Trauma and toxic reactions
- G. Miscellaneous
 - Familial amyloid polyneuropathy

Liver transplantation may be considered **medically necessary** in patients with polycystic disease of the liver who have massive hepatomegaly causing obstruction or functional impairment.

Liver transplantation may be considered **medically necessary** in patients with unresectable hilar cholangiocarcinoma¹.

Liver transplantation may be considered **medically necessary** in pediatric patients with non-metastatic hepatoblastoma.

Liver *retransplantation* may be considered **medically necessary** in patients with:

- primary graft non-function
- hepatic artery thrombosis
- chronic rejection
- ischemic type biliary lesions after donation after cardiac death
- recurrent non-neoplastic disease causing late graft failure.

Liver transplantation is considered **investigational** in the following situations:

- Patients with intrahepatic cholangiocarcinoma
- Patients with neuroendocrine tumors metastatic to the liver.

Liver transplantation is considered **not medically necessary** in the following patients:

- Patients with hepatocellular carcinoma that have extended beyond the liver¹
- Patients with ongoing alcohol and/or drug abuse. (Evidence for abstinence may vary among liver transplant programs, but generally a minimum of three months is required.)

Liver transplantation is considered **investigational** in all other situations not described above.

¹See Policy Guidelines for patient selection criteria.

Policy Guideline

General

Potential contraindications subject to the judgment of the transplant center:

1. Known current malignancy, including metastatic cancer
2. Recent malignancy with high risk of recurrence
3. Untreated systemic infection making immunosuppression unsafe, including chronic infection
4. Other irreversible end-stage disease not attributed to liver disease
5. History of cancer with a moderate risk of recurrence
6. Systemic disease that could be exacerbated by immunosuppression
7. Psychosocial conditions or chemical dependency affecting ability to adhere to therapy.

Liver Specific Patient Selection Criteria

The MELD and PELD scores range from six (less ill) to 40 (gravely ill). The MELD and PELD scores will change during the course of a patient's tenure on the waiting list.

Patients with liver disease related to alcohol or drug abuse must be actively involved in a substance abuse treatment program.

Patients with polycystic disease of the liver do not develop liver failure but may require transplantation due to the anatomic complications of a hugely enlarged liver. The MELD/PELD score may not apply to these cases. One of the following complications should be present:

- Enlargement of liver impinging on respiratory function
- Extremely painful enlargement of liver
- Enlargement of liver significantly compressing and interfering with function of other abdominal organs.

Patients with familial amyloid polyneuropathy do not experience liver disease, *per se*, but develop polyneuropathy and cardiac amyloidosis due to the production of a variant transthyretin molecule by the liver. MELD/PELD exception criteria and scores may apply to these cases. Candidacy for liver transplant is an individual consideration based on the morbidity of the polyneuropathy. Many patients may not be candidates for liver transplant alone due to coexisting cardiac disease.

Criteria used for patient selection of hepatocellular carcinoma patients eligible for liver transplant include the Milan criteria, (3) which is considered the criterion standard, (4) the University of California, San Francisco (UCSF) expanded criteria, (5) and UNOS criteria. (1)

Milan criteria: a single tumor 5 cm or less diameter or two to three tumors 3 cm or less

UCSF expanded criteria: a single tumor 6.5 cm or less or up to three tumors 4.5 cm or less, and a total tumor size of 8 cm or less

UNOS T2 criteria: a single tumor 1 cm or greater and up to 5 cm or less diameter or two to three tumors 1 or greater cm and up to 3 cm or less and without extrahepatic spread or macrovascular invasion. UNOS criteria, which were updated in 2013, may prioritize T2 HCC that meet specified staging and imaging criteria by allocating additional points equivalent to a MELD score predicting a 15% probability of death within three months. (1)

Patients with hepatocellular carcinoma are appropriate candidates for liver transplant only if the disease remains confined to the liver. Therefore, the patient should be periodically monitored while on the waiting list, and if metastatic disease develops, the patient should be removed from the transplant waiting list. In addition, at the time of transplant a backup candidate should be scheduled. If locally extensive or metastatic cancer is discovered at the time of exploration prior to hepatectomy, the transplant should be aborted, and the backup candidate scheduled for transplant.

Note that liver transplantation for those with T3 HCC is not prohibited by UNOS guidelines, but these patients do not receive any priority on the waiting list. All patients with HCC awaiting transplantation are reassessed at three-month intervals. Those whose tumors have progressed and are no longer T2 tumors will lose the additional allocation points.

Additionally, nodules identified through imaging of cirrhotic livers are given a Class 5 designation. Class 5B and 5T nodules are eligible for automatic priority. Class 5B criteria consist of a single nodule 2 cm or larger and up to 5 cm (T2 stage) that meets specified imaging criteria. Class 5T nodules have undergone subsequent loco-regional treatment after being automatically approved upon initial application or extension. A single Class 5A nodule (greater than 1 cm and less than 2 cm) corresponds to T1 HCC and does not qualify for automatic priority.

However, combinations of Class 5A nodules are eligible for automatic priority if they meet stage T2 criteria. Class 5X lesions are outside of stage T2 and are not eligible for automatic exception points. Nodules less than 1 cm are

considered indeterminate and are not considered for additional priority. Therefore, the UNOS allocation system provides strong incentives to use loco-regional therapies to downsize tumors to T2 status and to prevent progression while on the waiting list.

Cholangiocarcinoma

According to the OPTN policy on liver allocation, candidates with cholangiocarcinoma (CCA) meeting the following criteria will be eligible for a MELD/PELD exception with a 10% mortality equivalent increase every three months:

- Centers must submit a written protocol for patient care to the OPTN/UNOS Liver and Intestinal Organ Transplantation Committee before requesting a MELD score exception for a candidate with CCA. This protocol should include selection criteria, administration of neoadjuvant therapy before transplantation, and operative staging to exclude patients with regional hepatic lymph node metastases, intrahepatic metastases, and/or extrahepatic disease. The protocol should include data collection as deemed necessary by the OPTN/UNOS Liver and Intestinal Organ Transplantation Committee.
- Candidates must satisfy diagnostic criteria for hilar CCA: malignant-appearing stricture on cholangiography and one of the following: carbohydrate antigen 19-9 100 U/mL, or and biopsy or cytology results demonstrating malignancy, or aneuploidy. The tumor should be considered unresectable on the basis of technical considerations or underlying liver disease (e.g., primary sclerosing cholangitis).
- If cross-sectional imaging studies (computed tomography [CT] scan, ultrasound, magnetic resonance imaging [MRI]) demonstrate a mass, the mass should be 3 cm or less.
- Intra- and extrahepatic metastases should be excluded by cross-sectional imaging studies of the chest and abdomen at the time of initial exception and every three months before score increases.
- Regional hepatic lymph node involvement and peritoneal metastases should be assessed by operative staging after completion of neoadjuvant therapy and before liver transplantation. Endoscopic ultrasound-guided aspiration of regional hepatic lymph nodes may be advisable to exclude patients with obvious metastases before neoadjuvant therapy is initiated.
- Transperitoneal aspiration or biopsy of the primary tumor (either by endoscopic ultrasound, operative, or percutaneous approaches) should be avoided because of the high risk of tumor seeding associated with these procedures.

Donor Criteria – Living Donor Liver Transplant

Donor morbidity and mortality are prime concerns in donors undergoing right lobe, left lobe, or left lateral segment donor partial hepatectomy as part of living-donor liver transplantation. Partial hepatectomy is a technically demanding surgery, the success of which may be related to the availability of an experienced surgical team. In 2000, the American Society of Transplant Surgeons proposed the following guidelines for living donors:

- Should be healthy individuals who are carefully evaluated and approved by a multidisciplinary team including hepatologists and surgeons to assure that they can tolerate the procedure
- Should undergo evaluation to assure that they fully understand the procedure and associated risks
- Should be of legal age and have sufficient intellectual ability to understand the procedures and give informed consent
- Should be emotionally related to the recipients
- Must be excluded if the donor is felt or known to be coerced
- Needs to have the ability and willingness to comply with long-term follow-up.

Benefit Application

Individual transplant facilities may have their own *additional* requirements or protocols that must be met in order for the patient to be eligible for a transplant at **their** facility.

Medicare Advantage

If a transplant is needed, we arrange to have the Medicare-approved transplant center review and decide whether the patient is an appropriate candidate for the transplant.

Services that are the subject of a clinical trial do not meet our Technology Assessment Protocol criteria and are considered investigational. *For explanation of experimental and investigational, please refer to the Technology Assessment Protocol.*

It is expected that only appropriate and medically necessary services will be rendered. We reserve the right to conduct prepayment and postpayment reviews to assess the medical appropriateness of the above-referenced procedures. **Some of this Protocol may not pertain to the patients you provide care to, as it may relate to products that are not available in your geographic area.**

References

We are not responsible for the continuing viability of web site addresses that may be listed in any references below.

1. Organ Procurement and Transplantation Network (OPTN). Organ Distribution: Allocation of Livers. 2013. Available online at: http://optn.transplant.hrsa.gov/PoliciesandBylaws2/policies/pdfs/policy_8.pdf. Last accessed December 2013.
2. Kamath PS, Wiesner RH, Malinchoc M et al. A model to predict survival in patients with end-stage liver disease. *Hepatology* 2001; 33(2):464-70.
3. Mazzaferro V, Regalia E, Doci R et al. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. *N Engl J Med* 1996; 334(11):693-9.
4. Llovet JM, Schwartz M, Mazzaferro V. Resection and liver transplantation for hepatocellular carcinoma. *Semin Liver Dis* 2005; 25(2):181-200.
5. Yao FY, Ferrell L, Bass NM et al. Liver transplantation for hepatocellular carcinoma: expansion of the tumor size limits does not adversely impact survival. *Hepatology* 2001; 33(6):1394-403.
6. Belle SH, Beringer KC, Detre KM. An update on liver transplantation in the United States: recipient characteristics and outcome. *Clin Transpl* 1995:19-33.
7. Sheiner P, Rochon C. Recurrent hepatitis C after liver transplantation. *Mt Sinai J Med* 2012; 79(2):190-8.
8. Maggs JR, Suddie AR, Aluvihare V et al. Systematic review: the role of liver transplantation in the management of hepatocellular carcinoma. *Aliment Pharmacol Ther* 2012; 35(10):1113-34.
9. Marcos A, Ham JM, Fisher RA et al. Single-center analysis of the first 40 adult-to-adult living donor liver transplants using the right lobe. *Liver Transpl* 2000; 6(3):296-301.

10. Wachs ME, Bak TE, Karrer FM et al. Adult living donor liver transplantation using a right hepatic lobe. *Transplantation* 1998; 66(10):1313-6
11. Fan ST, Lo CM, Liu CL et al. Safety of donors in live donor liver transplantation using right lobe grafts. *Arch Surg* 2000; 135(3):336-40.
12. Inomata Y, Uemoto S, Asonuma K et al. Right lobe graft in living donor liver transplantation. *Transplantation* 2000; 69(2):258-64.
13. Malago M, Testa G, Marcos A et al. Ethical considerations and rationale of adult-to-adult living donor liver transplantation. *Liver Transpl* 2001; 7(10):921-7.
14. Renz JF, Busuttil RW. Adult-to-adult living-donor liver transplantation: a critical analysis. *Semin Liver Dis* 2000; 20(4):411-24.
15. Bak T, Wachs M, Trotter J et al. Adult-to-adult living donor liver transplantation using right-lobe grafts: results and lessons learned from a single-center experience. *Liver Transpl* 2001; 7(8):680-6.
16. Schiffman ML, Brown RS, Jr., Olthoff KM et al. Living donor liver transplantation: summary of a conference at The National Institutes of Health. *Liver Transpl* 2002; 8(2):174-88.
17. American Society of Transplant Surgeons' position paper on adult-to-adult living donor liver transplantation. *Liver Transpl* 2000; 6(6):815-7.
18. Brown RS, Jr., Russo MW, Lai M et al. A survey of liver transplantation from living adult donors in the United States. *N Engl J Med* 2003; 348(9):818-25.
19. Grant RC, Sandhu L, Dixon PR et al. Living vs. deceased donor liver transplantation for hepatocellular carcinoma: a systematic review and meta-analysis. *Clin Transplant* 2013; 27(1):140-7.
20. Policies and Bylaws. Alexandria, VA: United Network for Organ Sharing; 2004.
21. Steinman TI, Becker BN, Frost AE et al. Guidelines for the referral and management of patients eligible for solid organ transplantation. *Transplantation* 2001; 71(9):1189-204.
22. Cooper C, Kanters S, Klein M et al. Liver transplant outcomes in HIV-infected patients: a systematic review and meta-analysis with synthetic cohort. *AIDS* 2011; 25(6):777-86.
23. Terrault NA, Roland ME, Schiano T et al. Outcomes of liver transplant recipients with hepatitis C and human immunodeficiency virus coinfection. *Liver Transpl* 2012; 18(6):716-26.
24. Decaens T, Roudot-Thoraval F, Hadni-Bresson S et al. Impact of UCSF criteria according to pre-and post-OLT tumor features: analysis of 479 patients listed for HCC with a short waiting time. *Liver Transpl* 2006; 12(12):1761-9.
25. Leung JY, Zhu AX, Gordon FD et al. Liver transplantation outcomes for early-stage hepatocellular carcinoma: results of a multicenter study. *Liver Transpl* 2004; 10(11):1343-54.
26. Yao FY, Ferrell L, Bass NM et al. Liver transplantation for hepatocellular carcinoma: comparison of the proposed UCSF criteria with the Milan criteria and the Pittsburgh modified TNM criteria. *Liver Transpl* 2002; 8(9):765-74.
27. Schwartz ME, D'Amico F, Vitale A et al. Liver transplantation for hepatocellular carcinoma: Are the Milan criteria still valid? *Eur J Surg Oncol* 2008; 34(3):256-62.
28. Ioannou GN, Perkins JD, Carithers RL, Jr. Liver transplantation for hepatocellular carcinoma: impact of the MELD allocation system and predictors of survival. *Gastroenterology* 2008; 134(5):1342- 51.

29. Chan EY, Larson AM, Fix OK et al. Identifying risk for recurrent hepatocellular carcinoma after liver transplantation: implications for surveillance studies and new adjuvant therapies. *Liver Transpl* 2008; 14(7):956-65.
30. Guitreau JJ, Cotton RT, Washburn WK et al. An early regional experience with expansion of Milan Criteria for liver transplant recipients. *Am J Transpl* 2010; 10(9):2092-8.
31. Pomfret EA, Washburn K, Wald C et al. Report of a national conference on liver allocation in patients with hepatocellular carcinoma in the United States. *Liver Transpl* 2010; 16(3):262-78.
32. Sotiropoulos GC, Molmenti EP, Omar OS et al. Liver transplantation for hepatocellular carcinoma in patients beyond the Milan but within the UCSF criteria. *Eur J Med Res* 2006; 11(11):467-70.
33. National Comprehensive Cancer Network. Clinical Practice Guidelines in Oncology. Hepatobiliary Cancers; v2:2013 Available online at: http://www.nccn.org/professionals/physician_gls/pdf/hepatobiliary.pdf. Last accessed December 21, 2013.
34. Zheng Z, Liang W, Milgrom DP et al. Liver Transplantation Versus Liver Resection in the Treatment of Hepatocellular Carcinoma: A Meta-Analysis of Observational Studies. *Transplantation* 2013.
35. Zhu Y, Dong J, Wang WL et al. Short- and long-term outcomes after salvage liver transplantation versus primary liver transplantation for hepatocellular carcinoma: a meta-analysis. *Transplant Proc* 2013; 45(9):3329-42.
36. Li HY, Wei YG, Yan LN et al. Salvage liver transplantation in the treatment of hepatocellular carcinoma: a meta-analysis. *World J Gastroenterol* 2012; 18(19):2415-22.
37. Chan DL, Alzahrani NA, Morris DL et al. Systematic review of efficacy and outcomes of salvage liver transplantation after primary hepatic resection for hepatocellular carcinoma. *J Gastroenterol Hepatol* 2014; 29(1):31-41.
38. Wang X, Li J, Riaz DR et al. Outcomes of Liver Transplantation for Nonalcoholic Steatohepatitis: A Systematic Review and Meta-Analysis. *Clin Gastroenterol Hepatol* 2013.
39. Gu J, Bai J, Shi X et al. Efficacy and safety of liver transplantation in patients with cholangiocarcinoma: a systematic review and meta-analysis. *Int J Cancer* 2012; 130(9):2155-63.
40. Darwish Murad S, Kim WR, Harnois DM et al. Efficacy of neoadjuvant chemoradiation, followed by liver transplantation, for perihilar cholangiocarcinoma at 12 US centers. *Gastroenterology* 2012; 143(1):88-98 e3; quiz e14.
41. Pascher A, Jonas S, Neuhaus P. Intrahepatic cholangiocarcinoma: indication for transplantation. *J Hepatobiliary Pancreat Surg* 2003; 10(4):282-7.
42. Meyer CG, Penn I, James L. Liver transplantation for cholangiocarcinoma: results in 207 patients. *Transplantation* 2000; 69(8):1633-7.
43. Robles R, Figueras J, Turron VS et al. Spanish experience in liver transplantation for hilar and peripheral cholangiocarcinoma. *Ann Surg* 2004; 239(2):265-71.
44. Heimbach JK, Gores GJ, Haddock MG et al. Predictors of disease recurrence following neoadjuvant chemoradiotherapy and liver transplantation for unresectable perihilar cholangiocarcinoma. *Transplantation* 2006; 82(12):1703-7.
45. Rea DJ, Heimbach JK, Rosen CB et al. Liver transplantation with neoadjuvant chemoradiation is more effective than resection for hilar cholangiocarcinoma. *Ann Surg* 2005; 242(3):451-8; discussion 58-61.

46. Shimoda M, Farmer DG, Colquhoun SD et al. Liver transplantation for cholangiocellular carcinoma: analysis of a single-center experience and review of the literature. *Liver Transpl* 2001; 7(12):1023-33.
47. Casavilla FA, Marsh JW, Iwatsuki S et al. Hepatic resection and transplantation for peripheral cholangiocarcinoma. *J Am Coll Surg* 1997; 185(5):429-36.
48. Weimann A, Varnholt H, Schlitt HJ et al. Retrospective analysis of prognostic factors after liver resection and transplantation for cholangiocellular carcinoma. *Br J Surg* 2000; 87(9):1182-7.
49. Friman S, Foss A, Isoniemi H et al. Liver transplantation for cholangiocarcinoma: selection is essential for acceptable results. *Scand J Gastroenterol* 2011; 46(3):370-5.
50. Heimbach JK. Successful liver transplantation for hilar cholangiocarcinoma. *Curr Opin Gastroenterol* 2008; 24(3):384-8.
51. Wu Y, Johlin FC, Rayhill SC et al. Long-term, tumor-free survival after radiotherapy combining hepatectomy-Whipple en bloc and orthotopic liver transplantation for early-stage hilar cholangiocarcinoma. *Liver Transpl* 2008; 14(3):279-86.
52. Mukherjee S, Sorrell MF. Controversies in liver transplantation for hepatitis C. *Gastroenterology* 2008; 134(6):1777-88.
53. Mathe Z, Tagkalos E, Paul A et al. Liver transplantation for hepatic metastases of neuroendocrine pancreatic tumors: a survival-based analysis. *Transplantation* 2011; 91(5):575-82.
54. Czauderna P, Otte JB, Aronson DC et al. Guidelines for surgical treatment of hepatoblastoma in the modern era--recommendations from the Childhood Liver Tumour Strategy Group of the International Society of Paediatric Oncology (SIOPEL). *Eur J Cancer* 2005; 41(7):1031-6.
55. Barrena S, Hernandez F, Miguel M et al. High-risk hepatoblastoma: results in a pediatric liver transplantation center. *Eur J Pediatr Surg* 2011; 21(1):18-20.
56. Malek MM, Shah SR, Atri P et al. Review of outcomes of primary liver cancers in children: our institutional experience with resection and transplantation. *Surgery* 2010; 148(4):778-82; discussion 82-4.
57. Browne M, Sher D, Grant D et al. Survival after liver transplantation for hepatoblastoma: a 2-center experience. *J Pediatr Surg* 2008; 43(11):1973-81.
58. Bellido CB, Martinez JM, Artacho GS et al. Have we changed the liver retransplantation survival? *Transplant Proc* 2012; 44(6):1526-9.
59. Remiszewski P, Kalinowski P, Dudek K et al. Influence of selected factors on survival after liver retransplantation. *Transplant Proc* 2011; 43(8):3025-8.
60. Hong JC, Kaldas FM, Kositamongkol P et al. Predictive index for long-term survival after retransplantation of the liver in adult recipients: analysis of a 26-year experience in a single center. *Ann Surg* 2011; 254(3):444-8; discussion 48-9.
61. Clavien PA, Lesurtel M, Bossuyt PM et al. Recommendations for liver transplantation for hepatocellular carcinoma: an international consensus conference report. *Lancet Oncol* 2012; 13(1):e11-22.
62. Murray KF, Carithers RL, Jr. AASLD practice guidelines: Evaluation of the patient for liver transplantation. *Hepatology* 2005; 41(6):1407-32.
63. Steinmuller T, Kianmanesh R, Falconi M et al. Consensus guidelines for the management of patients with liver metastases from digestive (neuro)endocrine tumors: foregut, midgut, hindgut, and unknown primary. *Neuroendocrinology* 2008; 87(1):47-62.

64. Newsome PN, Allison ME, Andrews PA et al. Guidelines for liver transplantation for patients with non-alcoholic steatohepatitis. Gut 2012; 61(4):484-500.
65. Centers for Medicare and Medicaid Services. National Coverage Determination (NCD) Pub. 100.3 Liver Transplantation. NCD Section 260.1 (adult) and 260.2 (pediatric).