ANATOMY & PHYSIOLOGY FOR CODING PROFESSIONALS

BAKER NEWMAN NOYES

BOSTON • MANCHESTER • PORTLAND • PORTSMOUTH

FOR PRESENTATION PURPOSES ONLY

- Basic review of structure and function of various organs in the major body systems
- Highlight common disease states and conditions associated with these body systems
- Identify opportunities to apply knowledge in coding scenarios

BODY SYSTEMS

- Hematopoietic & Immune
- Endocrine
- Nervous
- Circulatory
- Respiratory
- Digestive
- Integumentary
- Musculoskeletal
- Genitourinary

BODY SYSTEMS

- **Anatomy-** the science of the *structure* of living organisms
- **Physiology**-study of the normal *functions* of living organisms

• Working knowledge of the body structures is necessary in order to understand their functions

ANATOMIC TERMS

- Directional
 - Anterior (ventral)-toward the front
 - Posterior (dorsal)-toward the back of the body
 - Inferior (caudal)-away from the head
 - Superior (cephalad)-toward the head
 - Medial-toward the mid-line
 - Lateral-away from the mid-line
 - Superficial-nearer to the skin surface

DIRECTIONAL

ANATOMICAL POSITION

PLANES

QUADRANTS

REGIONS

CAVITIES

STRUCTURAL ORGANIZATION

STRUCTURAL ORGANIZATION

- Chemical
- Cellular
- Tissue
- Membrane
- Organ
- Body system

TISSUE TYPES

Four types of tissue

Connective tissue

Muscle tissue

Epithelial tissue

Nervous tissue

© ADAM, Inc.

TISSUES

- Four major types of *tissue* that perform specific functions
 - 1) Epithelial tissue
 - Lines the external body surfaces and internal surfaces of digestive and respiratory tracts blood vessels and ducts; makes up sense organs
 - Glandular epithelium makes up the secreting portion of glands

EPITHELIAL TISSUE

Copyright © The Benjamin/Cummings Publishing Co., Inc., from Campbell, Mitchell, Reece Biology: Concepts and Connections.

• 2) Connective tissue

- Binds, supports, and protects the body organs
- Based on the cell type
- Ex. Cartilage, Bone, Vascular tissue

- Cartilage-dense connective tissue
 - Cell type is chondrocyte
 - Chondromalacia
 - Articular-joints
 - Costal-end of the ribs
 - Intervertebral discs, external ear, nose, trachea, etc.

• Bone

- Firm, specialized connective tissue
- Two types-
 - Compact-dense out layer
 - Cancellous-spongy-looking inner
- Cell type-osteocyte (osteoblasts & osteoclasts)
- Calcium and phosphate deposits within the bone give it strength

• Dentin

- Connective tissue that forms teeth
- Closely related to bone, but harder and denser
- Enamel covers crown of teeth

- **Blood**-liquid tissue circulating through the body
 - Functions to carry oxygen, nutrients, enzymes, waste products, hormones
 - Provides protection through white blood cells (leukocytes)
 - Temperature regulation

- **Lymph**-fluid composed of water, protein, fats, and salt.
- Functions to transport fluid, proteins, etc. from the tissues to the circulatory system
- Lymphatic vessels carry the lymph
- Cell type-lymphocytes and granulocytes

LYMPH

(a) Association of blood capillaries, tissue, and lymphatic capillaries

MUSCLE TISSUE

3) Muscle

- Three types-skeletal, smooth, and cardiac
- Highly specialized cells make up muscle tissue
- Basic function is to contract (shorten)

MUSCLE TISSUE

MUSCLE TISSUE

- **Smooth muscle**-involuntary movements
 - Lines digestive, urinary, respiratory tracts, blood vessel walls, lymph vessels
- Skeletal muscle-voluntary movements (consciously control)
 - Attached to bones, tendons, and other muscles
- **Cardiac muscle**-involuntary heart contractions

NERVOUS TISSUE

4) Nervous

- Most highly organized tissue of the body
- Makes up the brain, spinal cord, and nerves

• *Neurons* generate and send impulses from one part of the body to another

• *Glial cells* bind neurons together

NERVOUS TISSUE

NERVOUS TISSUE

• Function to send electrical impulses throughout the body, controlling and coordinating movements and activities

MEMBRANES

• Thin tissues that covers the body and organs and lines hollow cavities and organs

MEMBRANES

- Classified according to function
 - Cutaneous membranes-skin
 - Mucous membranes-
 - Line organs that have an opening to the outside of the body (respiratory, digestive tract)
 - Serous membranes-
 - Line body cavities and the exterior of organs that do not open to the outside of the body (pleura lining the thoracic cavity)
 - Synovial membranes

MEMBRANES

• Tissues combine together in organs to perform specific functions

BODY SYSTEM

• Organs work together to perform specific functions

A & P.....WHY NOW?

 Increased specificity requirements of ICD-10

> I69.052-Hemiplegia & hemiparesis following nontraumatic subarachnoid hemorrhage affecting left dominant side

I69-Sequelae of cerebrovascular disease0-nontraumatic subarachnoid hemorrhage5-Hemiplegia & hemiparesis2-left dominant side
MORE CODES AND MORE DETAIL

ICD-9-CM

ICD-10-CM

466.0 Acute Bronchitis J20.0 Acute bronchitis due to Mycoplasma J20.1 Acute bronchitis due to streptococcus J20.3 Acute bronchitis due to coxsackievirus J20.4 Acute bronchitis due to parainfluenza virus J20.5 Acute bronchitis due to respiratory syncytial virus J20.6 Acute bronchitis due to rhinovirus J20.7 Acute bronchitis due to echovirus J20.8 Acute bronchitis due to other specified organisms J20.9 Acute bronchitis, unspecified

CALCANEUS FRACTURE

ICD-9-CM

- Fracture of calcaneus, closed 825.0
- Fracture of calcaneus, open 825.1

ICD-10-CM

- S92.061A
- Displaced intraarticular fracture of R calcaneus, Initial encounter for closed fracture

HEMATOPOIETIC & IMMUNE SYSTEM

BAKER NEWMAN NOYES

BOSTON • MANCHESTER • PORTLAND • PORTSMOUTH

FOR PRESENTATION PURPOSES ONLY

"The red blobs are your red blood cells. The white blobs are your white blood cells. The brown blobs are coffee. We need to talk."

© 1996 Randy Glasbergen, E-mail: randy@glasbergen.com www.glasbergen.com

BLOOD COMPOSITION

BLOOD COMPONENTS

• Leukocytes-WBC

- Erythrocytes-RBC
- Thrombocytes-PLT

• Plasma

BLOOD COMPONENTS

Eosinophil Neutrophil Basophil Red blood cell Lymphocyte Monocyte

Platelet

BLOOD SMEAR

WBC COMPONENTS

- Granulocytes
- Neutrophils 60-70%
- Basophils 1%
- Eosinophils 4-6%
- Agranulocytes
- Lymphocytes 20-25%
- Monocytes 3-8%

• Constant proportion in *healthy* individual

BLOOD CELLS

- Affected by infection or inflammatory process in the body
- Conditions that affect production in the bone marrow or survival in the bloodstream

• Normal WBC count 3.5-10.5 billion cells/L

WBC FUNCTION

- Fight infection and inflammation
- Phagocytic
- Antigen-antibody response (lymphocytes)

Abnormal Blood Smear

ANTIGEN-ANTIBODY RESPONSE

- Provide immunity to disease
- ABO blood types
- Allergies and allergic reaction
- Organ transplant rejection

Red blood cell

RBC FUNCTIONS

• Oxygen transport in the body

33% of RBC volume = hemoglobin-Hgb

Heme-iron containing red pigment Globin-protein component

HEMOGLOBIN

Red bloodcell

Hemoglobin molecule

Red blood cells contain several hundred thousand hemoglobin molecules, which transport oxygen

Oxygen binds to heme on the hemoglobin molecule

Heme

RBC LIFE SPAN

- 120 days
 - Body must continually produce RBC.

• Where?-Bone Marrow

• Anemia-reduction in number of functional RBC or reduced hemoglobin content

LABORATORY VALUES

Hemoglobin

- Male: 13.5-17.5 gm/dL
- Female: 12.0-15.5 grams/dL
- Male: 38.8-50.0 %
- Female: 34.9-44.5 %

Hematocrit

PLATELETS

FUNCTION

- Prevent fluid (blood) loss
- Platelets adhere to damaged blood vessel initiating the clotting cascade
- Over a dozen different clotting factors secreted, resulting in fibrin strands and eventually blood clot

LABORATORY VALUES

• Platelet count: 150-450 billion/L

• Laboratory reference values. Hematology group. Rochester, Minn.: Mayo Foundation for Medical Education and Research; December 2010.

MYELOID TISSUE

red bone marrow

yellow bone marrow

LYMPHATIC TISSUE

 Lymph nodes, spleen, tonsils, adenoids, and thymus

BLOOD

- Liquid element-plasma
- Formed elements-cells

INTERSTITIAL FLUID

• Fluid in spaces between the cells of the body

INTERSTITIAL FLUID

• Also called extracellular fluid

- Makes up 1/3 of the water in the body
- Accounts for 20% of body weight

C Healthwise, Incorporated

FUNCTION

- Removal of pathogens, damaged/old RBC, blood storage and release during hemorrhage
- Production of lymphocytes, monocytes, and plasma cells in response to bacteria or viruses
- Blood storage
- Defense against disease-producing organisms

IMMUNE SYSTEM

NON-SPECIFIC DEFENSE

- Skin-protects underlying structures and produces substances (sweat) that are toxic to many pathogens
- Mucous Membranes-eye, nose, mouth produce lysozyme which can destroy microorganisms
- Mucus in respiratory tract-traps pathogens
- Phagocytic WBC-destroy organisms that penetrate skin/mucous membranes

Specific Defense

- Cell-mediated immunity
 - Lymphocytes attack pathogens directly
- T-cells
 - Killer T-cells
 - Helper T-cells
 - Suppressor T-cells
 - Memory T-cells

CELL MEDIATED IMMUNITY

BNN

SPECIFIC DEFENSE

• Antibody-Mediated Immunity

- Antibody-protein produced by plasma cells in response to presence of an antigen
- B-Cells responsible for antibody-mediated immunity

ANTIBODY MEDIATED IMMUNITY

SPECIFIC DEFENSE

- Antibodies = Immunoglobulins
 - *IgG* most abundant-fight bacteria/viruses
 - IgA- in tears, mucous membranes, breast milk, and saliva to protect from pathogens
 - *IgM-cause clumping of RBC (agglutination) and attach to antigen*
 - *IgE-stimulate histamine release causing allergic reaction*
 - *IgD*-bind to antigens activating B-cells

IMMUNITY

IMMUNE SYSTEM

• Immune and Circulatory systems (blood and lymph) must work together to provide defense against pathogens!

BLOOD TYPING

• Method to determine the specific type of blood in the body

• Type is dependent on the presence or absence of certain proteins, called antigens, on the RBC

BLOOD TYPE

- Type A
- Type B
- Type AB
- Type O
 - Rh+ or Rh-

BLOOD TYPING

Blood Type	Cell Antigen	Serum Antibodies	Donor				
A	А	В	A or O				
В	В	А	B or O				
AB	AB	None	All				
0	None	A and B	0				
Table 1. ABO Blood Groups							

BLOOD COMPATIBILITY

Recipient ^[1]	Donor ^[1]									
	0-	0+	Α-	Α+	B-	B+	AB-	AB+		
0-	\checkmark									
0+	\checkmark	\checkmark								
Α-	\checkmark		\checkmark							
A+	\checkmark	\checkmark	\checkmark	\checkmark						
В-	1				\checkmark					
B+	\checkmark	\checkmark			\checkmark	\checkmark				
AB-	\checkmark		\checkmark		\checkmark		\checkmark			
AB+	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		

COMMON LAB TESTS

- Complete Blood Count (CBC)-measures RBC, WBC, Plt, Hgb, Hct
- CBC with differential-also includes type and percentage of WBC
- Hct-Percent of RBC in blood
- Hgb-Amount of Hgb in blood
- Plt-Number of platelets in blood
- PT/PTT-measures blood clotting time
- INR-International normalized ratio-

COMMON TESTS

- INR contd.- calculated from PT; used in monitoring anticoagulation therapy
- ESR-erythrocyte sedimentation rate-nonspecific test associated with inflammation, infection, autoimmune diseases

ENDOCRINE SYSTEM

ENDOCRINE SYSTEM

- Essential function is the maintain homeostasis
- Endocrine and central nervous system work together to regulate body functions

ENDOCRINE SYSTEM

- Endo- within
- Crine-to secrete

• Hormone-to set in motion

NEGATIVE FEEDBACK

PITUITARY GLAND

• Hypophysis

PITUITARY GLAND

HORMONES OF THE ANTERIOR PITUITARY GLAND

- Growth Hormone (GH)
- Thyroid Stimulating Hormone (TSH)
- Adrenocorticotropic Hormone (ACTH)
- Follicle Stimulating Hormone (FSH)
- Luteinizing Hormone (LH)
- Prolactin
- Melanocyte Stimulating Hormone (MSH)

HORMONES OF THE POSTERIOR PITUITARY GLAND

- Oxytocin
- Antidiuretic Hormone (ADH)

THYROID GLAND

• 2 lobed gland, either side of trachea

BNN

HORMONES OF THE THYROID

- Thyroxine-T4
- Triiodothyronine-T3
 - Require iodine for synthesis; dietary sources
 - When T4, T3 low, pituitary produces TSH stimulating thyroid to produce more, leading to enlargement called goiter
- Calcitonin-released in response to high blood calcium levels

GOITER

THYROID FUNCTIONS

- Control metabolism
- Increasing rate of carbohydrate & protein metabolism
- Increasing body temperature
- Increasing heart rate
- Increasing reactivity of nervous system
- Regulating tissue growth & development

PARATHYROID GLANDS

BNN

PARATHYROID GLANDS

- Also important in maintaining blood calcium levels
- PTH is released when blood Calcium levels are low; target cells for PTH are in the kidney and bone

PARATHYROID GLANDS

 Hyperparathyroidism-usually caused by tumor or enlargement of one or more glands; Bone reabsorption of calcium (out) with increased blood levels, kidney stones, soft bones/fractures/osteoporosis

• Hypoparathyroidism-rare condition of abnormally low parathyroid hormone levels, with elevated phosphorus

Adrenal Glands

Adrenal Gland

Adrenal Cortex

Mineralocorticoids

• Glucocorticoids

Gonadocorticoids

- Mineralocorticoids-**Aldosterone** is principle hormone and functions to conserve salt and water in the body. Target cells are in kidney
- Glucocorticoids-Cortisol(hydrocortisone) is principle hormone and functions to raise blood glucose which promotes normal metabolism and provides stress resistance

ADRENAL CORTEX

• Gonadocorticoids-**Androgens** in males and **estrogens** in females; effect of these hormones is usually overshadowed by release of these hormones from the testes and ovaries

Adrenal Medulla

- Secrete epinephrine(adrenaline) and norepinephrine (noradrenaline)
- Response is increased heart and respiratory rate, increased blood pressure, increase in force of muscular contraction, increased blood sugar level
- Fight or flight response...or fright

PANCREAS

• Head, body, tail sections

- Both and endocrine and exocrine gland
 - Endocrine-Islets of Langerhans are clusters of cells
 - Alpha cells-secrete glucagon (raises blood sugar)
 - Beta cells-secrete insulin (lowers blood sugar)
 - Exocrine-digestive enzymes

OVARIES

- Estrogen & progesterone
- Development of female reproductive organs
- Fat distribution in hips, legs, breasts
- Menstrual cycle
- Prepare uterus for pregnancy and maintain uterus during pregnancy
- Prepare mammary glands for lactation

- Testosterone is primary male androgen
- Development of male reproductive structures
- Skeletal and muscular growth
- Enlargement of larynx; voice changes
- Male sex drive

PINEAL GLAND

PINEAL GLAND

• Melatonin-maintain normal sleep-wake cycles and needed for reproductive development

THYMUS

THYMUS

- Thymus-in mediastinum behind the sternum and between the lungs
- Lymphatic tissue-make T-lymphocytes that protect against infection
- Peak size at age 2; replaced by fat during puberty

IN SUMMARY...

NERVOUS SYSTEM

OVERVIEW

- Complex and sophisticated system that coordinates, communicates, and regulates body activities
- Senses changes both in our internal and external environment
- Electrical messages called nerve impulses are carried to and from central nervous system

SUBDIVISIONS

 Central Nervous System (CNS)-brain and spinal cord

C Healthwise, Incorporated

SUBDIVISIONS

• Peripheral Nervous System (PNS)-consists of all other neural elements

BNN

NERVOUS SYSTEM

NERVOUS SYSTEM

Central Nervous System (CNS) Brain and Spinal cord Peripheral Nervous System (PNS)

Nerves that connect all parts of the body to the brain

Sensory Division

Conducts sensory information from sense organs and other internal organs to the CNS

Motor Division

Made up of motor fibers that conduct nerve impulses from CNS to muscles and glands

Sympathetic Division

Activates body during emergency situations

Parasympathetic Division Controls non-emergency functions Autonomic Nervous System (ANS)

Conducts nerve impulses from CNS to organs and glands Somatic Nervous System

Conducts nerve impulses from CNS to muscles Voluntary control

PNS SUBDIVISIONS

• Afferent (sensory) neurons carry impulses from peripheral body to the brain and spinal cord

• Efferent (motor) neurons carry impulses from the brain and spinal cord to muscles and glands

PNS SUBDIVISIONS

- Efferent subdivided into
 - Somatic nervous system (voluntary)
 Fibers connect CNS with skeletal muscle & skin

Autonomic nervous system (automatic)
 Fibers connect CNS with cardiac
 muscle, smooth muscle, organs & glands

AUTONOMIC NERVOUS SYSTEM

- Major component of maintaining body homeostasis
 - Sympathetic Division-response to stress, anxiety, fear, excitement-"fight or flight response" done by increasing *norepinephrine* and epinephrine secretion from adrenal gland resulting in increased heart rate, blood pressure, respiration

AUTONOMIC NERVOUS SYSTEM

• **Parasympathetic Division-** "rest and digest system"; conserves energy as it slows heart rate, stimulates digestion; dilates blood vessels; relaxes sphincter muscles in the GI tract • Neurons-generate and conduct impulses from one part of body to another

 Neuroglia-also called glial cells-form connective tissue of nervous system; nonconductive tissue that supports and insulates nervous tissue

NEURON

CNS GLIAL CELLS

- Astrocytes
- Oligodendrocytes
- Ependymal cells
- Microglia

NEUROGLIA

Cells of the Central Nervous System

PNS GLIAL CELLS

Schwann Cell Dendrite Axon Terminal Node of Ranvier Cell body Schwann cell Axon Hillock Myelin sheath Nucleus

BRAIN ANATOMY

© Original Artist / Search ID: Jo0150

Rights Available from CartoonStock.com

CEREBRUM FUNCTIONS

• 1. Motor functions-muscle movement

- 2. Sensory functions-interpret sensory input
- 3. Association functions-emotional and intellectual processes

CEREBELLUM FUNCTIONS

• Controls unconscious movements in skeletal muscle

• Coordination, posture, balance

BRAIN STEM

MEDULLA OBLONGATA

- Conduction of nerve impulses between the spinal cord and brain
- Origination of 4 pairs of cranial nerves (IX, X, XI, XII)

• Three vital reflex centers: cardiac, respiratory and vasoconstrictor centers

• Pons means "bridge"

• Between the spinal cord and brain

• Four cranial nerved originate here: V, VI, VII, VII, VIII

MIDBRAIN

- Mesencephalon
- Connects pons and the cerebellum
- Two cranial nerves originate here: III, IV

• Relay sensory impulses (except smell) to the cerebral cortex

• Recognize and interpret pain

- Heartbeat, urinary bladder contraction, movement of food through digestive tract
- Control Body temperature
- Responds to changes in mental state by initiating changes in HR, RR, etc.
- Stimulate hunger, satiety, thirst sensations
- Regulate sleep/wake cycles
- Work with endocrine system-homeostasis

BRAIN ANATOMY

Spinal Cord

MENINGES

- Dura mater (tough mother)
- Arachnoid
- Pia mater (delicate mother)
- Membranes cover and protect brain and spinal cords

CEREBROSPINAL FLUID (CSF)

SIGNS, SYMPTOMS, ABNORMAL FINDINGS

- General
 - Disorientation, stupor, drowsiness
 - Vertigo
 - Speech disturbance
 - Convulsions

SIGNS, SYMPTOMS, ABNORMAL FINDINGS

- Specific to Nervous System
 - Abnormalities of gait and movement
 - Abnormalities of involuntary movements
 - Abnormal reflexes
 - Lack of coordination
 - Transient/permanent paralysis

DIAGNOSTIC TESTS

• Blood, urine, CSF

• EEG, EMG, PET

• CT/MRI

LUMBAR PUNCTURE

Spinal fluid is collected for testing

EEG

 $\begin{array}{c} \label{eq:product} Fp1 \cdot F3 \\ \label{eq:product} F3 \cdot C3 \\ \label{$

Fp	2 • F4.	ų	s.	~~~	m	m	mm	44-m	mm	~~~	mu	~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\sim	mar	m	~~~~
F4	.C4	ŵ	Ś	~~	m	mn	~~~~~	m	mm	w	ww	m	m	m	~~~~	nn	m
C4	• P4/~	w	~~~~	MN	mm	MN	Mm	m	w-M	m	ww	m	mm	m	mmW	Mrr	man
P4	- 02/7	m	M~~	ww	ww	~~~~	mm	w	Mw	vh	m	hu	ww	ww	200	mm	- Nov
Fz	·Cz'	Ŵ	M	m	m	m	nm		m	~~~	how	m	m	micro	volts	1 seco	ond
Cz	٠Þz	m	N	w	NW	W	how	w	wW	Λnvi	ww	~~~v	www	m	mM	vvvv	r-w

CT SCAN

MRI

CRANIAL NERVES

Nerve I. Olfactory II. Optic III. Oculomotor IV. Trochlear V. Trigeminal VI. Abducens VII. Facial VIII. Vestibulocochlear IX. Glossopharyngeal X. Vagus XI. Accessory XII. Hypoglossal

Function Smell Vision Eye movement, pupil constriction Eye movement Touch, pain from the face and head; muscles for chewing. Eye movement Taste, facial expressions Balance and hearing Taste and swallowing Glands, digestion, heart rate Head and shoulder movement. Muscles of tongue

BNN

OPHTHALMIC SYSTEM

BAKER NEWMAN NOYES BOSTON • MANCHESTER • PORTLAND • PORTSMOUTH

FOR PRESENTATION PURPOSES ONLY

EYE

- Most complex of sense organs
- Vision occurs when light interacts with special cells in the eyes, sending electrical impulses to the visual center

• Also performs color differentiation and depth perception

 Accessory structures include the eyebrows, eyelids, extraocular muscles, and lacrimal glands

EYE

EYE

- Conjunctiva
 - Clear membrane covering the sclera and inside of eyelids
 - Lubricates and prevents foreign bodies from penetrating deeper into the eye

- Sclera
 - White part of eye
 - Protective layer and maintains the shape of the globe (eyeball, bulbus oculi)
 - Provides attachment for extraocular muscles (EOM)
- Cornea
 - Transparent fibrous coat covering the front of eye
 - Works with lens to refract light to focus on the retina

- Anterior chamber
 - Space between iris and cornea
 - Filled with aqueous humor
- Iris
 - Colored part of eye
 - Controls size and diameter of the pupil and the amount of light reaching the retina
 - Divides anterior and posterior chamber

- Lens
 - Transparent structure, along with cornea, helps to refract light to be focused on the retina
 - Changes shape (flattened vs. spherical) enabling eye to adjust focus between near and far objects (accommodation)

- Ciliary Body
 - Smooth muscle which controls accommodation
- Posterior chamber
 - Space behind the iris and in front of the lens
 - Stores aqueous humor and eventually transported to anterior chamber

POSTERIOR SEGMENT

- Vitreous Body (Vitreous humor)
 - Transparent, colorless gel that fills space between lens and retina
- Retina
 - Light sensitive tissue lining covering back surface of eye
 - Rods/Cones
 - Rods-light sensitive; support vision when light is low
 - Cones-color perception and visual acuity

POSTERIOR SEGMENT

- Choroid-vascular layer providing oxygen and other nutrients to the outer layers of the retina
- Posterior sclera

ADNEXA

- Extraocular Muscles
- Medial rectus
 - Inward towards nose-adduction
- Lateral rectus
 - Outward away from nose-abduction
- Superior rectus
 - Upward/elevation-adduction
- Inferior rectus
 - Downward/depression-adduction
- Superior oblique
 - Downward/depression-abduction
- Inferior oblique
 - Upward/elevation-abduction

EXTRAOCULAR MUSCLES

- Eyelid-protect eye from foreign material and spreads tears to keep eye surface moist
- Levator palpebrae muscle
- Meibomian glands

• Ciliary glands (glands of Zeis and Moll)

MEIBOMIAN GLANDS

ADNEXA

• Lacrimal System

• Orbit-socket containing the eyeball

• Optic Nerve (CNII)-transmits visual information from the retina to the brain

AUDITORY SYSTEM

BOSTON • MANCHESTER • PORTLAND • PORTSMOUTH

FOR PRESENTATION PURPOSES ONLY

SECTIONS OF THE EAR

- Outer and middle
 - hearing and sound wave conduction

- Inner
 - hearing and balance or equilibrium

ANATOMY

EXTERNAL EAR ANATOMY

• Auricle-pinna

• External auditory canal (EAC)

MIDDLE EAR ANATOMY

• Tympanic Membrane(TM)-ear drum

MIDDLE EAR ANATOMY

• Ossicles

- Malleus (hammer)

– Incus (anvil)

– Stapes (stirrup)

MIDDLE EAR ANATOMY

• Eustachian Tube

- Connects middle ear with nasopharynx

- Pressure valve

– Drain

EUSTACHIAN TUBE

C Healthwise, Incorporated

INNER EAR ANATOMY

• Semicircular canals, vestibule & cochlea

BNN
INNER EAR ANATOMY

- Vestibular Labyrinth System
 - Balance and equilibrium
 - Vestibular nerve
 - Works with eyes muscles to keep vision steady with body movement

INNER EAR ANATOMY

- Oval window
 - Stapes rests against this membrane

- Cochlear Labyrinth
 - Cochlea is main auditory portion

- Spiral structure resembling snail

TRANSMISSION OF SOUND WAVES

MASTOID PROCESS

Projects from temporal bone behind the ear

- Spongy bone resembling honeycomb
- Connected to middle ear therefore middle ear infections can spread to the mastoid

- Requires laterality & specificity
 - Specific causes for Otitis Externa; recurrent status code choices for OM

 Conductive and sensorineural hearing loss differentiated by laterality and further by status of contralateral side

OTITIS MEDIA

ICD-9 21 codes for OM

ICD-10 80 codes for OM

HEARING LOSS

- Conductive
 - Impairment of sound conduction from outer ear to the ossicles in the middle ear
 - Reduction in sound level and inability to hear soft sounds
 - Generally correctable with medical or surgical intervention

HEARING LOSS

- Sensorineural
 - Damage to the cochlea or nerve pathways from inner ear to brain
 - Permanent in nature
- Mixed
 - Components of both conductive & sensorineural

HEARING LOSS

- Ototoxic
 - Drugs or chemicals toxic to auditory system
 - Antibiotics, chemotherapy agents, anticonvulsant, diuretics

- Presbycusis
 - Progressive age related hearing loss
 - Usually high pitched sounds

CIRCULATORY SYSTEM

BAKER NEWMAN NOYES

BOSTON • MANCHESTER • PORTLAND • PORTSMOUTH

FOR PRESENTATION PURPOSES ONLY

CIRCULATORY SYSTEM

• Cardiovascular and Lymphatic Systems

• Function-move blood and lymph throughout body in continuous, controlled manner

ORGANS OF CIRCULATORY System

• Heart and blood vessels

• Pericardium

- Sac enclosing the heart

HEART WALL

HEART CHAMBERS

- Chambers
 - Right/Left Atrium
 - Right/Left Ventricle
 - Septum-interatrial/interventricular

BNN

HEART VALVES

HEART VALVES

- Atrioventricular-

- Right=Tricuspid valve
- Left=Mitral valve

- Pulmonic valve
- Aortic valve

REGULATION

- Conduction
 - Sinoatrial (SA) node-pacemaker of the heart
 - Atrioventricular (AV) node-modify heart rate and cardiac output in response to body requirements
 - Atrioventricular bundle (Bundle of His)
 - R, L Bundle branches
 - Purkinje fibers

CONDUCTION

CARDIAC CYCLE

CARDIAC CYCLE

- During contraction (systole), atrioventricular valves close preventing backflow into atria and blood is pumped into the arteries
- During relaxation (diastole), AV valves are open to allow blood to flow through to ventricles
- Closing of valves produces heart sounds heard on physical examination

Systole

THE HEART IN SYSTOLE

BNN

DIASTOLE

THE HEART IN DIASTOLE

BLOOD VESSELS

BNN

GREAT VESSELS

- Great Vessels
 - Pulmonary vein (PV)
 - Pulmonary artery (PA)
 - Superior and inferior vena cava (SVC, IVC)
 - Aorta

CIRCULATION

BNN

• Systemic circulation – SVC, IVC, Aorta

)6

CIRCULATION

- Circulatory Routes
 - Ascending aorta
 - -Aortic arch
 - -Descending aorta
 - Thoracic
 - Abdominal
 - -Table 6.1 Chapter 6

PHYSIOLOGY

LYMPHATIC SYSTEM

• Interstitial fluid

• Lymph

- Lymphatic vessels
 Lymphatic trunks
 - Lumbar, intestinal,
 - bronchomediastinal,
 - intercostal, subclavian,
 - jugular
 - R, L thoracic lymphatic ducts

• Lymph Nodes

- Lymph Organs
 - Tonsils
 - Spleen
 - Thymus
 - Peyer's Patches
 - Appendix

ICD-10-CM CODING

 Combination codes for atherosclerotic heart disease with angina pectoris
 Subcategories for native vessel vs. graft

- Myocardial infarction healing time reduced to 28 days (vs 8- wks.)
 - Subsequent MI

ICD-10-CM

- Subsequent episode of care designation restricted to new MI during 4-week healing period, not used for re-evaluation, observation, or treatments of MI treated on previous admission
- Same code for benign and malignant HTN
- Cerebral hemorrhage and infarction require laterality, specific artery involved or site of hemorrhage

ICD-10-CM

• Arterial and venous disease of the extremities requires specific location

"The defibrillator's not working! Quick, everyone scuff your feet on the carpet!"

Respiratory System

BAKER NEWMAN NOYES

BOSTON • MANCHESTER • PORTLAND • PORTSMOUTH

FOR PRESENTATION PURPOSES ONLY

• Upper respiratory tract

- Nasal cavity
- Paranasal sinuses
- Pharynx
- Larynx
- Lower respiratory
 - Trachea
 - Bronchi
 - Lungs

- Nasal Cavity
- Nares/nostrils
- Nasal septum
- Inferior, middle, superior turbinate

NASAL CAVITIES

Nose and Nasal Cavities

- Paranasal Sinuses
- Maxillary-largest, each side of nose
- Ethmoid-root of nose, behind bridge between eye sockets
- Frontal-above eyes and in the forehead area
- Sphenoid-small, deepest within skull behind ethmoid

- Tonsils
- Clumps of lymph tissue (lymphocytes)
- Traps viruses/bacteria entering throat

SINUS CAVITIES

OROPHARYNX

- Pharynx
- Part of throat between nasal cavity and larynx
- Nasopharynx, oropharynx, hypopharynx/laryngopharynx

PHARYNX

The pharynx, a common passageway for solid food, liquids, and air

- Larynx
- Connects pharynx to trachea
- Epiglottis-flap structure which covers opening to larynx during swallowing
- Vocal cords-elastic connective tissue and skeletal muscle that controls the tension on the folds
- With muscular contraction, the cords vibrate as air passes through, generating sound

LARYNX

- Trachea
 - Windpipe

- Bronchi
- R & L main stem bronchus
- Branch into smaller bronchi into each lobe of lung-R lung (3), L lung (2)
- Bronchioles
- Alveoli

- Lungs
- R Lung-upper, middle, lower lobe
- L Lung-upper, lower lobe
- Mediastinum-space between lungs containing heart, great vessels, and esophagus
- Capillary beds in and around alveoli are site of gas exchange

LUNGS

- Pleura
- Membrane that surrounds and adheres to the lungs, folds back on itself and lines the chest wall
- Pleural space

PLEURA

• Mechanics of Breathing

Copyright C The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- Inspiration
- Diaphragm & external intercostal muscles
- Flattens with inspiration, pulling lungs downward and increasing volume within the thoracic cavity
- Negative air pressure created which allows lungs to be filled with air

- Expiration
- Normally is passive without muscular effort

• Accessory muscles include sternocleidomastoid, scalene, abdominal, and internal intercostal

- Resistance to airflow
- Diameter of airway decreased therefore increasing resistance

• Normally low but increases with swelling, obstruction with mucus, and bronchial muscle spasm

- Elasticity and compliance of the lungs and chest wall
- Elasticity-tendency to return to original shape after being stretched
- Compliance-a measure of how easily the lungs and chest wall can be stretched
- Disease states can alter the compliance/elasticity balance

- Alveolar surface tension
- As surface tension increases, expansion of lungs is more difficult
 - Surfactant decreases alveolar surface tension; without it alveoli would collapse

• Collection of air in the pleural space, putting pressure on lung and causing it to collapse

BNN

- Causes include trauma, infection, spontaneous
- (bleb rupture)

PNEUMOTHORAX

PNEUMOTHORAX

PNEUMOTHORAX

BNN

COMMON SIGNS AND SYMPTOMS

- Asphyxia
 - Severe decrease in blood O2 that leads to loss of consciousness/death
- Cough
 - Reflex to dislodge and expectorate secretions/foreign body
- Dyspnea
 - Difficulty breathing
- Epistaxis
 - Nose bleed

SIGNS AND SYMPTOMS

• Hemoptysis

- Coughing up blood
- Hyperventilation
 - Deep and fast ventilation, resulting in low blood PaCO2
 - Low BP, tingling, numbress in feet/hands/lips, fainting

• Hypoxemia

– Abnormally low blood O2
SIGNS AND SYMPTOMS

• Intercostal pain

 Pain in rib area/muscles made worse by coughing, sneezing, breathing

• Pleurodynia

- Source of pain is pleura, made worse by coughing, sneezing, breathing
- Shortness of Breath (SOB)
 - Need for air, breathlessness
 - Orthopnea-when lying flat

SIGNS AND SYMPTOMS

• Respiratory Arrest

 Sudden cessation of respiration caused by airway obstruction, decreased ventilation effort (CNS disorder, poisoning, drugs etc.), or weakness of respiratory muscles (infection, neuromuscular disorders)

DIGESTIVE SYSTEM

BAKER NEWMAN NOYES BOSTON • MANCHESTER • PORTLAND • PORTSMOUTH

FOR PRESENTATION PURPOSES ONLY

DIGESTIVE SYSTEM

• Gastrointestinal tract (GI tract)

• Accessory organs of digestion

• Break down food

- Prepare it for uptake by the cells
- Supply body with water
- Eliminate waste

CELLS

- Specialized types performing specific functions. Examples include:
 - Mucous
 - Serous
 - Enterocytes
 - Endocrine
 - Parietal
 - Hepatocytes
 - Acinar cells

TISSUES OF DIGESTIVE TRACT

- 4 layers of tissue that line the digestive canal
 - Mucosa
 - Submucosa
 - Muscularis
 - Serosa

TISSUES OF DIGESTIVE TRACT

MUCOSA

 Mucosal epithelium contain protrusions (villi) and depressions (gastric pits/intestinal crypts)

• Increase absorptive surface area; site of glandular secretions

• Contains blood vessels, lymph vessels, and nerves supplying the mucosa

MUSCULARIS

 Responsible for peristalsis and the churning action of the stomach that aids in digestion

• Outermost, smooth membrane lining the GI tract

• Envelopes the organs of the abdominal and pelvic cavity

• Called adventitia in areas where it is attached to surrounding tissue

ORGANS AND FUNCTIONS

- Tongue
- Salivary Glands
- Esophagus
- Stomach
- Small Intestine
- Large Intestine
- Liver
- Pancreas
- Gall bladder

ORAL CAVITY

BNN

ORAL CAVITY

⁽a) Location of salivary glands

Submandibular, sublingual, and parotid glands

ESOPHAGUS

ESOPHAGUS

- Upper esophageal sphincter-prevents air from entering esophagus during respiration
- Lower esophageal sphincter-prevents food in the stomach from re-entering the esophagus

STOMACH

Copyright © 2009 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

STOMACH

• Chyme

- Digestive Juices
 - Mucus-protects stomach lining
 - Hydrochloric Acid (HCl)-kills microorganisms that have been swallowed
 - Pepsin-breaks down proteins
 - Intrinsic factor-Vitamin B12 absorption

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

• Site of absorption of body nutrientssugars, fats, amino acids, water electrolytes, vitamins

- Mucosal folds slow the passage of food and allow for greater absorption
- Villi and microvilli

• Duodenum

- Begins breakdown of chyme; mixes with bile from gall bladder and enzymes from pancreas
 Subjector of Oddi
- Sphincter of Oddi

• Jejunum

- Complete breakdown of chyme

• Ileum

- *Absorb* nutrients and bile
- Ileocecal valve-controls movement of digested food into the large intestine
- Mesentery

MESENTERY

BNN

- Cecum
- Appendix
- Colon
- Rectum
- Anal canal

- Continued absorption of water and electrolytes for use by the body
- Solid waste products that remain form feces

Defecation

"Well, you appear to be free of infection, but your colonoscopy video has gone viral"

LIVER

© Mayo Foundation for Medical Education and Research. All rights reserved.

LIVER

- Main job is filtering of blood coming from the digestive tract
- Detoxifies chemicals and metabolizes drugs
- Manufactures proteins-albumin, proteins involved in blood clotting
- Hepatocytes-functional units of liver

LIVER CIRCULATION

LIVER CIRCULATION

- Perfused from both arterial and venous blood supplies
- Hepatic artery
- Portal vein

• Blood leaves via hepatic vein, into the inferior vena cava

LIVER

GALL BLADDER

GALLBLADDER

- Pear shaped sac-like organ, under R lobe of the liver
- Stores and concentrates bile secreted by the liver
- Stimulated to contract and release bile into the duodenum-neural and hormonal control

• *Exocrine*-secretes pancreatic juices that neutralize acidic contents in the duodenum and enzymes to breakdown carbohydrates, proteins, and fats

• *Endocrine*-secretes hormones directly into the bloodstream (insulin)

INTEGUMENTARY SYSTEM

BAKER NEWMAN NOYES BOSTON • MANCHESTER • PORTLAND • PORTSMOUTH

FOR PRESENTATION PURPOSES ONLY

COMPONENTS

- Integumentary system
 - Skin
 - Hair
 - Nails
 - Sebaceous and sweat glands

FUNCTION

- Protective barrier
- Temperature regulation
- Touch and pressure receptors
- Vitamin D
- Largest organ of the body

LAYERS

CELLS

- Epidermal cells
- Keratinocytes-keratin
- Melanocyte-pigment
- Langerhans Cells-immune defense
- Merkel Cells-touch receptors and sensory nerve endings

CELLS

- Dermal cells
- Fibroblasts-structural integrity
- Mast Cells-hypersensitivity reactions in skin; histamine
- Macrophages-immune response

- Hypodermal cells
- Fat-cushioning layer

NAILS

- Composed of keratin
- Matrix
- Lunula
- Nail plate
- Paranychium

SKIN GLANDS

• Sebaceous glands-produce sebum

 Sudoriferous(sweat) glandsproduce sweat via eccrine glands over most of the body.
Apocrine glands located in axilla and groin region.

C Mayo Foundation for Medical Education and Research. All rights reserved.

PRESSURE ULCERS

PRESSURE ULCERS

Progression of decubitis ulcer

PRESSURE ULCERS

Common Locations of Pressure Ulcers

STAGE I

STAGE II

STAGE III

STAGE IV

 Classified by depth (severity) and amount of body surface involved

BURN DEPTH

Table 2. Burn Depth Classification.

Depth First-degr ee:	Histology Epidermis only	Appearance Erythema; blanches with pressure	Sensation Intact; mild to moderate pain	Healing 3-6 days without scarring
Second degr ee: • Superficial	Epidermis and superficial dermis; skin appendages intact	Erythema, blisters, moist, elastic; blanches with pressure	Intact; severe pain	1-3 weeks; scarring unusual
• Deep	Epidermis and most dermis; most skin appendages destroyed	White appearing with erythematous areas, dry, waxy, less elastic; reduced blanching to pressure	Decreased; may be less painful	>3 weeks; often with scarring and contractures
Third-degree:	Epidermis and all of dermis; destruction of all skin appendages	White, charred, tan, thrombosed vessels; dry and leathery; does not blanch	Anesthetic; not painful (although surrounding areas of second-degree burns are painful)	Does not heal; severe scarring and contractures

MUSCULOSKELETAL SYSTEM

BAKER NEWMAN NOYES

BOSTON • MANCHESTER • PORTLAND • PORTSMOUTH

FOR PRESENTATION PURPOSES ONLY

MUSCULOSKELETAL SYSTEM

• Muscular system-movement and protection of underlying structures

MUSCULOSKELETAL SYSTEM

 Skeletal system-structural framework to support body and protect internal organs

Skeletal System

- Functions
 - Support
 - Protection
 - Leverage
 - Storage
 - Blood Cell Production

BONE CELLS

CELLS

- Osteoblasts
 - Bone forming
- Osteocytes
 - Maintain bone structure & occupy lacunae
 - Mature osteoblasts
- Osteoclasts
 - Absorb and remove bone tissue
 - Continually reshaping itself

- Chondroblasts, chondrocytes, chondroclasts
 - Same mechanism of action on cartilage tissue

CARTILAGE TYPES

CARTILAGE TYPES

• Hyaline

- Most abundant
- Flexibility and support
- In joints-articular cartilage; ends of ribs-costal cartilage
- Example: nose, larynx, trachea, bronchi

CARTILAGE TYPE

- Fibrocartilage
 - Strong and rigid
 - Example: intervertebral discs, symphysis pubis
- Elastic cartilage
 - Strength and shape
 - Example: external ear, eustachian tubes

• Diaphysis

- Shaft or middle section

• Epiphyses

- Spongy (cancellous) bone and contain bone marrow
- Long bones have 2 epiphyses, one at each end-distal and proximal

• Metaphysis

 Section of bone between epiphysis and diaphysis

Articular Cartilage

Thin layer of cartilage which covers the epiphyses; In joint, forms articulation with another bone

GROWTH PLATE

• Physis

Synonymous with epiphyseal cartilage, epiphyseal plate, or growth plate

• Periosteum

Functions include bone growth and repair, supply nutrients, point of attachment for tendons and ligaments

- Medullary Cavity
 - Space within the diaphysis containing bone marrow
- Endosteum
 - Membrane lining medullary cavity
BONE ANATOMY

• Long

- Greater length than width
- Growth plates at either end
- More compact bone than spongy bone
- Example: Femur, humerus

• Short

- Cube-shaped
- Primarily spongy bone
- Support and stability with
- little movement
- Example: Carpals, tarsals

• Flat

- Flat, strong plates of bone
- Protect vital organs
- Base for muscle attachment
- Example: scapula, sternum, skull

• Irregular

- Non-uniform shape
- Primarily cancellous (spongy)
- Example: vertebrae, sacrum, mandible

• Sesamoid

- Short or irregular, embedded in a tendon
- Example: patella

BONE MARKINGS

Name of Bone Marking	Description	Name of Bone Marking	Description
Projections That Are Sites of Muscle and Ligament		Projections That Help to Form Joints	
Attachment		Head	Bony expansion carried on a narrow neck
Tuberosity (too"bě-ros'ĭ-te)	Large rounded projection; may be roughened	Facet	Smooth, nearly flat articular surface
Crest	Narrow ridge of bone: usually prominent	Condyle (kon'dīl)	Rounded articular projection
Trochanter (tro-kan/ter)	Very large, blunt, irregularly shaped process (The only examples are on the femur.)	Ramus (ra'mus)	Armlike bar of bone
(do kan ter)		Depressions and	Openings Allowing Blood Vessels and
Line	Narrow ridge of bone; less prominent than a crest	Nerves to Pass	
		Meatus (me-a'tus)	Canal-like passageway
Tubercle (too'ber-kl)	Small rounded projection or process	Sinus	Cavity within a bone, filled with air and lined with mucous membrane
Epicondyle (ep″ĭ-kon′dīl)	Raised area on or above a condyle	Fossa (fos'ah)	Shallow, basinlike depression in a bone, often serving as an articular surface
Spine	Sharp, slender, often pointed projection	Groove	Furrow
Process	Any bony prominence	Fissure	Narrow, slitlike opening
		Foramen (fo-ra'men)	Round or oval opening through a bone

AXIAL & APPENDICULAR SKELETON

- Axial-bones that form axis or center of body (80)
 - Skull, bony thorax, vertebral column

- Appendicular-bones that form appendages/upper & lower extremities including the pelvis (126)
- 206 total bones

AXIAL & APPENDICULAR SKELETON

SKULL

FACIAL BONES

AUDITORY OSSICLES

HYOID

BONY THORAX

Sternum Ribs (12 pairs)

VERTEBRAL COLUMN(SPINE)

7 cervical
12 thoracic
5 lumbar
Sacrum
Coccyx(tail bone)

VERTEBRA

UPPER EXTREMITY

UPPER EXTREMITY

- Shoulder
 - Clavicle, scapula
- Humerus
- Radius
- Ulna
- Carpal bones(8)
- Metacarpals(5), phalanges(14)

LOWER EXTREMITY

Pelvic girdle
– Ilium, pubis, ischium

– acetabulum

LOWER EXTREMITY

- Femur
- Patella
- Tibia, fibula

LOWER EXTREMITY

- Ankle
 - Hindfoot-calcaneus, talus, navicular, cuboid
 - Forefoot- Cuneiforms

LIGAMENT & TENDON

• Ligaments-attach bone to bone

• Tendons-connect muscle to bone

JOINT TYPES

• Fibrous

- Little or no movement
- No joint cavity
- Tightly joined by fibrous tissue
- Example: cranial sutures, proximal tibia/fibula

JOINT TYPES

Cartilaginous

- Little or no movement
- No joint cavity
- Tightly joined by cartilaginous tissue
- Example: intervertebral discs, pubic symphysis

JOINT TYPES

• Synovial joints

- Movement determined by ligaments, tendons, muscles, and other bones
- A joint cavity
- Articular cartilage and synovial membrane
- Synovial fluid lubricates joint
- May contain bursae-closed sac containing synovial fluid providing a cushion and reduce friction between bones

SYNOVIAL JOINT

BNN

TYPES OF SYNOVIAL JOINTS

- Ball and socket-hip, shoulder
- Condyloid-knuckle and wrist
- Gliding/Plane-wrist, ankle, spine
- Hinge-elbow, knee
- Pivot-neck, elbow
- Saddle-thumb

SYNOVIAL JOINTS

FRACTURES

- Displaced vs. nondisplaced
- Open vs. closed
- Type
- Laterality
- Episode of Care

FRACTURES

BNN

FRACTURE TYPES

- Transverse
- Oblique
- Spiral
- Torus
- Greenstick
- Comminuted
- Compression

FRACTURE TYPES

Fractures

Open (compound)

Displaced

Avulsion

Closed

Non Displaced

Comminuted

© 2007 RelayHealth and/or its affiliates. All rights reserved.

Compression

Greenstick

Impacted

GUSTILO OPEN FRACTURE CLASSIFICATION

- Defined by 3 characteristics
 - Mechanism of Injury
 - Extent of soft tissue damage
 - Degree of bone injury or involvement

GUSTILO OPEN FRACTURE CLASSIFICATION

- Type I
 - Wound < 1 cm
 - Minimal soft tissue damage
 - Fracture is generally simple transverse, oblique, minimally comminuted

• Type II

- Wound > 1 cm
- Moderate soft tissue damage
- No wound bed contamination
- Same fracture types as Type I

GUSTILO OPEN FRACTURE CLASSIFICATION

• Type III

- Wound > 1 cm with extensive soft tissue damage; Typically a high-energy injury
 - Type III A

Adequate soft tissue coverage

- Type III B
 - Extensive soft tissue loss requiring local or distant flap coverage
 - Wound bed contamination requiring irrigation/debridement
- Type III C
 - Associated with major vascular injury

BNN
GUSTILO OPEN FRACTURE CLASSIFICATION

© 2007 WebMID Inc. All rights reserved

GENITOURINARY SYSTEM

BAKER NEWMAN NOYES

BOSTON • MANCHESTER • PORTLAND • PORTSMOUTH

FOR PRESENTATION PURPOSES ONLY

C Healthwise, Incorporated

ANATOMY

- External Genitalia
- Labia majora
- Labia minora
- Bartholin's gland; Skene's glands
- Clitoris
- Perineum

• Uterus

- Fundus-dome shaped portion
- Corpus-main body
- Cervix-opens into vagina
- •Round, suspensory, broad and uterosacral ligaments
- Lining of uterus thickens during monthly cycle, in preparation for fertilization of egg
- Lining sheds if fertilization does not occur

• **Vagina** Elastic, muscular passageway connecting uterus to external genitalia

- **Ovaries** Follicles contain developing egg cells (ova/oocyte)
- Typically release 1 egg every 28 days

- Fallopian Tubes Transport egg from ovary to the uterus
- Cilia and muscular wall of tube move egg downward
- Infundibulum
- Ampulla
- Isthmus

- Penis
- Testes
- Production and storage of sperm (reproductive)
- - Production of testosterone (endocrine)
 - Epididymis
 - Located superior/posterior surface of testes
 - Site of sperm maturation

- Vas deferens
- Tube that transports sperm from epididymis to the urethra
- Additional secretions from seminal vesicles and prostate gland combine with sperm to form semen
- Ejaculatory duct
 - Travels through prostate gland to urethra

• Spermatic Cord

– Passes from inguinal canal to the testis

ACCESSORY GLANDS

- Seminal Vesicles
- Prostate Gland
 - Exocrine gland that helps in production and storage of seminal fluid
 - Alkaline prostatic fluid neutralizes acidity of vagina, prolonging the life of sperm necessary for fertilization

FEMALE REPRODUCTIVE HORMONES

- Estrogen- Secondary sex characteristics
- Growth of reproductive organs
- Assists in calcium uptake to maintain bone density

- **Progesterone** Works with estrogen to establish menstrual cycle
- Maintenance of pregnancy
- Milk production following pregnancy

- Located in breasts
- Increase in size during puberty under influence of estrogen
- Functional during lactation

CONCEPTION

- Fertilization generally occurs in the fallopian tube
- Implants in uterus by 7 days after ovulation

IMPLANTATION

DETECTION

- hCG (human chorionic gonadotropin) secreted by newly fertilized egg can be detected in blood and urine 12 days after implantation
- • Missed menstrual period
- Increased basal body temperature
- •Breast tenderness, fatigue, nausea, spotting, cramping

PREGNANCY DOCUMENTATION

- Gravida=pregnant female
- Nulligravida
- Primigravida
- Multigravida

PREGNANCY DOCUMENTATION

- Parity documented in the following manner: G=# of term pregnancies
- P=# of deliveries
- Numbers following the letter P
- Number of term pregnancies
- Number of premature deliveries
- Number of abortions or miscarriages
- Number of living children

PREGNANCY DOCUMENTATION

• Ex. G2P1001 2nd pregnancy with 1 term delivery, no premature deliveries or abortions with 1 living child at home

• Ex. G3P1104 3rd pregnancy with 1 term delivery, 1 premature delivery with 4 living children at home meaning one of the pregnancies was a triplet pregnancy

- 1st trimester-less than 14 weeks
- • 2nd trimester-14 weeks-27 weeks 6 days
- • 3rd trimester-28 weeks until delivery
- ICD-10-CM-majority of pregnancy/childbirth codes have final character representing weeks of gestation
- • Ex. Z3A.13

- First Trimester
- Up to 13 weeks, 6 days
- Embryo for the first 8 weeks
- Fetus from 2 months un^{···} · ·
- Rapid growth during
- Placenta develops

Normal fetus at 12th week of pregnancy

- Second Trimester
- 14 weeks 27 weeks, 6 days
- External signs of pregnancy occur
- Organs mature and skeleton hardens
- Hearing & urinary systems begin to work

- Third Trimester
- 28 weeks until delivery
- Maternal physical growth along with fetal growth
- Fetal lung maturation
- Head of fetus drops into pelvic cavity

BNN

Normal fetus at 40th week of pregnancy

LABOR

- 3 stages **Dilation**-longest phase; amniotic sac ruptures; cervix fully dilates
- **Expulsion**-Full dilation until delivery and cutting of umbilical cord
- **Placental**-placenta detaches from uterine wall

LABOR

QUESTIONS??

Thank you! Dianne Rodrigue, PA, MHP, CPC AHIMA Approved ICD-10-CM/PCS Trainer Senior Consultant Baker Newman Noyes

280 Fore Street Portland, ME 207-791-7517 drodrigue@bnncpa.com